Nina Heidary

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5131600/publications.pdf

Version: 2024-02-01

304743 526287 1,523 28 22 27 h-index citations g-index papers 28 28 28 1999 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Amorphous Iron–Manganese Oxyfluorides, Promising Catalysts for Oxygen Evolution Reaction under Acidic Media. ACS Applied Energy Materials, 2021, 4, 1173-1181.	5.1	25
2	Rational incorporation of defects within metal–organic frameworks generates highly active electrocatalytic sites. Chemical Science, 2021, 12, 7324-7333.	7.4	50
3	Electrografted Interfaces on Metal Oxide Electrodes for Enzyme Immobilization and Bioelectrocatalysis. ChemElectroChem, 2021, 8, 1329-1336.	3.4	6
4	Host–Guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as a Hybrid System in CO ₂ Reduction. ACS Catalysis, 2020, 10, 751-761.	11.2	43
5	Mechanochemical synthesis of cobalt/copper fluorophosphate generates a multifunctional electrocatalyst. Chemical Communications, 2020, 56, 9276-9279.	4.1	5
6	<i>Operando</i> vibrational spectroscopy for electrochemical biomass valorization. Chemical Communications, 2020, 56, 8726-8734.	4.1	28
7	Electrochemically Triggered Dynamics within a Hybrid Metal–Organic Electrocatalyst. Journal of the American Chemical Society, 2020, 142, 12382-12393.	13.7	40
8	Disparity of Cytochrome Utilization in Anodic and Cathodic Extracellular Electron Transfer Pathways of <i>Geobacter sulfurreducens</i> Biofilms. Journal of the American Chemical Society, 2020, 142, 5194-5203.	13.7	59
9	Electrochemical biomass valorization on gold-metal oxide nanoscale heterojunctions enables investigation of both catalyst and reaction dynamics with <i>operando</i> surface-enhanced Raman spectroscopy. Chemical Science, 2020, 11, 1798-1806.	7.4	120
10	Probing CO ₂ Conversion Chemistry on Nanostructured Surfaces with Operando Vibrational Spectroscopy. Nano Letters, 2019, 19, 4817-4826.	9.1	86
11	Investigation of mixed-metal (oxy)fluorides as a new class of water oxidation electrocatalysts. Chemical Science, 2019, 10, 9209-9218.	7.4	47
12	<i>Operando</i> Raman probing of electrocatalytic biomass oxidation on gold nanoparticle surfaces. Chemical Communications, 2019, 55, 11996-11999.	4.1	23
13	Structure–Activity Relationships of Hierarchical Three-Dimensional Electrodes with Photosystem II for Semiartificial Photosynthesis. Nano Letters, 2019, 19, 1844-1850.	9.1	61
14	Artificial photosynthesis with metal and covalent organic frameworks (MOFs and COFs): challenges and prospects in fuelâ€forming electrocatalysis. Physiologia Plantarum, 2019, 166, 460-471.	5.2	31
15	Advancing Techniques for Investigating the Enzyme–Electrode Interface. Accounts of Chemical Research, 2019, 52, 1439-1448.	15.6	59
16	Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode. Nature Catalysis, 2019, 2, 354-365.	34.4	145
17	Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solarâ€Driven Reduction of Carbon Dioxide. Angewandte Chemie - International Edition, 2019, 58, 4601-4605.	13.8	115
18	Interfacing Formate Dehydrogenase with Metal Oxides for the Reversible Electrocatalysis and Solarâ€Driven Reduction of Carbon Dioxide. Angewandte Chemie, 2019, 131, 4649-4653.	2.0	34

#	Article	IF	CITATION
19	In Situ Spectroelectrochemical Studies into the Formation and Stability of Robust Diazonium-Derived Interfaces on Gold Electrodes for the Immobilization of an Oxygen-Tolerant Hydrogenase. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23380-23391.	8.0	23
20	Catalysis by design: development of a bifunctional water splitting catalyst through an operando measurement directed optimization cycle. Chemical Science, 2018, 9, 5322-5333.	7.4	73
21	Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angewandte Chemie, 2018, 130, 10755-10759.	2.0	16
22	Solar Water Splitting with a Hydrogenase Integrated in Photoelectrochemical Tandem Cells. Angewandte Chemie - International Edition, 2018, 57, 10595-10599.	13.8	93
23	Orientation-Controlled Electrocatalytic Efficiency of an Adsorbed Oxygen-Tolerant Hydrogenase. PLoS ONE, 2015, 10, e0143101.	2.5	29
24	Electrochemical and Infrared Spectroscopic Studies Provide Insight into Reactions of the NiFe Regulatory Hydrogenase from <i>Ralstonia eutropha</i> with O ₂ and CO. Journal of Physical Chemistry B, 2015, 119, 13807-13815.	2.6	30
25	A One-Pot Approach to Mesoporous Metal Oxide Ultrathin Film Electrodes Bearing One Metal Nanoparticle per Pore with Enhanced Electrocatalytic Properties. Chemistry of Materials, 2013, 25, 4645-4652.	6.7	18
26	A unique iron-sulfur cluster is crucial for oxygen tolerance of a [NiFe]-hydrogenase. Nature Chemical Biology, 2011, 7, 310-318.	8.0	225
27	Role of the HoxZ Subunit in the Electron Transfer Pathway of the Membrane-Bound [NiFe]-Hydrogenase from <i>Ralstonia eutropha</i> Immobilized on Electrodes. Journal of Physical Chemistry B, 2011, 115, 10368-10374.	2.6	39
28	Host-guest Chemistry Meets Electrocatalysis: Cucurbit[6]uril on a Au Surface as Hybrid System in CO2 Reduction., 0,,.		0