
Rachid Hanna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5131412/publications.pdf Version: 2024-02-01

ΡΑCΗΙΟ ΗΛΝΝΑ

#	Article	IF	CITATIONS
1	Musa Germplasm A and B Genomic Composition Differentially Affects Their Susceptibility to Banana Bunchy Top Virus and Its Aphid Vector, Pentalonia nigronervosa. Plants, 2022, 11, 1206.	3.5	10
2	Spatioâ€ŧemporal partitioning and sharing of parasitoids by fall armyworm and maize stemborers in Cameroon. Journal of Applied Entomology, 2021, 145, 55-64.	1.8	8
3	Managing and monitoring genetic isolation and local adaptation of endemic and introduced Cotesia sesamiae for the biological control of the cereal stemborer Busseola fusca in Cameroon. Biological Control, 2021, 155, 104478.	3.0	0
4	Bird communities in African cocoa agroforestry are diverse but lack specialized insectivores. Journal of Applied Ecology, 2021, 58, 1237-1247.	4.0	14
5	Gender Roles in Sourcing and Sharing of Banana Planting Material in Communities with and without Banana Bunchy Top Disease in Nigeria. Sustainability, 2021, 13, 3310.	3.2	9
6	New cassava germplasm for food and nutritional security in Central Africa. Scientific Reports, 2021, 11, 7394.	3.3	16
7	Temperature-based phenology model to predict the development, survival, and reproduction of the oriental fruit fly Bactrocera dorsalis. Journal of Thermal Biology, 2021, 97, 102877.	2.5	13
8	Thermal response and horizontal transmission of cameroonian isolates of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae – Candidates for microbial controls of the banana root borer Cosmopolites sordidus. Fungal Ecology, 2021, 50, 101042.	1.6	14
9	Visual cues from different trap colours affect catches of Sahlbergella singularis (Hemiptera: Miridae) in sex pheromone traps in Cameroon cocoa plantations. Crop Protection, 2020, 127, 104959.	2.1	10
10	Efficiency of Food-Based Attractants for Monitoring Tephritid Fruit Flies Diversity and Abundance in Mango Systems Across Three West African Agro-Ecological Zones. Journal of Economic Entomology, 2020, 113, 860-871.	1.8	9
11	<i>Cosmopolites sordidus</i> (Germar) susceptibility to indigenous Cameroonian <i>Beauveria bassiana</i> (Bals.) Vuill. and <i>Metarhizium anisopliae</i> (Metsch.) isolates. Journal of Applied Entomology, 2020, 144, 468-480.	1.8	10
12	Genome of the African cassava whitefly Bemisia tabaci and distribution and genetic diversity of cassava-colonizing whiteflies in Africa. Insect Biochemistry and Molecular Biology, 2019, 110, 112-120.	2.7	47
13	Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) in Cameroon: Case study on its distribution, damage, pesticide use, genetic differentiation and host plants. PLoS ONE, 2019, 14, e0215749.	2.5	37
14	Fruit Preference, Parasitism, and Offspring Fitness of Fopius arisanus (Hymenoptera: Braconidae) Exposed to Bactrocera dorsalis' (Diptera: Tephritidae) Infested Fruit Species. Environmental Entomology, 2019, 48, 1286-1296.	1.4	10
15	Seasonal Polyphenism in Bicyclus dorothea (Lepidoptera: Nymphalidae) Across Different Habitats in Cameroon. Environmental Entomology, 2018, 47, 1601-1608.	1.4	4
16	The role of abiotic factors on both mango infestation and Sternochetus mangiferae abundances in mango agroecosystems in Benin. International Journal of Tropical Insect Science, 2018, 38, 232-242.	1.0	1
17	Size of predatory mites and refuge entrance determine success of biological control of the coconut mite. BioControl, 2016, 61, 681-689.	2.0	12
18	Transport and Dispersal of Stictococcus Vayssierei (Hemiptera, Stictococcidae) by Anoplolepis Tenella (Hymenoptera, Formicidae). Journal of Insect Behavior, 2015, 28, 426-435.	0.7	1

RACHID HANNA

#	Article	IF	CITATIONS
19	Ant Diversity in Dominant Vegetation Types of Southern Cameroon. Biotropica, 2015, 47, 94-100.	1.6	25
20	Biology, Etiology, and Control of Virus Diseases of Banana and Plantain. Advances in Virus Research, 2015, 91, 229-269.	2.1	73
21	Effects of the entomopathogenic fungus Neozygites tanajoae and the predatory mite Typhlodromalus aripo on cassava green mite densities: screenhouse experiments. BioControl, 2013, 58, 397-405.	2.0	5
22	Farmers' perception of coconut mite damage and crop diversification alternatives in the coastal belt of Tanzania. International Journal of Acarology, 2012, 38, 471-479.	0.7	5
23	Old and new host-parasitoid associations: parasitism of the invasive fruit fly <i>Bactrocera invadens</i> (Diptera: Tephritidae) and five African fruit fly species by <i>Fopius arisanus</i> , an Asian opiine parasitoid. Biocontrol Science and Technology, 2010, 20, 183-196.	1.3	41
24	Molecular detection and differentiation of Brazilian and African isolates of the entomopathogenNeozygites tanajoae(Entomophthorales:Neozygitaceae) with PCR using specific primers. Biocontrol Science and Technology, 2009, 19, 67-79.	1.3	12
25	Host plants of <i>Stictococcus vayssierei</i> Richard (Stictococcidae) in non-crop vegetation in the Congo Basin and implications for developing scale management options. International Journal of Pest Management, 2009, 55, 339-345.	1.8	10
26	Within-Plant Migration of the Predatory Mite Typhlodromalus aripo from the Apex to the Leaves of Cassava: Response to Day–Night Cycle, Prey Location and Prey Density. Journal of Insect Behavior, 2009, 22, 186-195.	0.7	20
27	Environment and hostâ€plant genotype effects on the seasonal dynamics of a predatory mite on cassava in subâ€humid tropical Africa. Agricultural and Forest Entomology, 2009, 11, 321-331.	1.3	21
28	Phytoseiid mites of the genus <i>Neoseiulus</i> Hughes (Acari: Phytoseiidae) from sub-Saharan Africa. International Journal of Acarology, 2006, 32, 241-276.	0.7	27
29	Seasonal cycles and persistence in an acarine predator-prey system on cassava in Africa. Population Ecology, 2005, 47, 107-117.	1.2	30
30	Mites of cassava (<i>Manihot esculenta crantz</i>) habitats in Southern. International Journal of Acarology, 2005, 31, 149-164.	0.7	10
31	Interactions Between Two Neotropical Phytoseiid Predators on Cassava Plants and Consequences for Biological Control of a Shared Spider Mite Prey: a Screenhouse Evaluation. Biocontrol Science and Technology, 2004, 14, 63-76.	1.3	19
32	Title is missing!. Journal of Insect Behavior, 2003, 16, 523-535.	0.7	7
33	Flexible antipredator behaviour in herbivorous mites through vertical migration in a plant. Oecologia, 2002, 132, 143-149.	2.0	56
34	Attraction of the predatory mites Typhlodromalus manihoti and Typhlodromalus aripo to cassava plants infested by cassava green mite. Entomologia Experimentalis Et Applicata, 2001, 101, 291-298.	1.4	20