Mark Biesinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5131134/publications.pdf

Version: 2024-02-01

52 19,169 28 52 papers citations h-index g-index

52 52 52 52 30319

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Location of cobalt impurities in the surface oxide of stainless steel 316L and metal release in synthetic biological fluids. Materials and Design, 2022, 215, 110524.	3.3	3
2	Zirconium-organic framework as a novel adsorbent for arsenate remediation from aqueous solutions. Journal of Molecular Liquids, 2022, 356, 118957.	2.3	15
3	Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review. Applied Surface Science, 2022, 597, 153681.	3.1	154
4	The kinetics of copper corrosion in nitric acid. Materials and Corrosion - Werkstoffe Und Korrosion, 2021, 72, 348-360.	0.8	10
5	Investigating the Role of Mo and Cr during the Activation and Passivation of Ni-Based Alloys in Acidic Chloride Solution. Journal of the Electrochemical Society, 2021, 168, 021509.	1.3	22
6	Systematic and collaborative approach to problem solving using X-ray photoelectron spectroscopy. Applied Surface Science Advances, 2021, 5, 100112.	2.9	451
7	Synthesis and Reactivity of Cationic Gallium(I) [12]Crown-4 Complexes. Inorganic Chemistry, 2021, 60, 14713-14720.	1.9	5
8	New weldable 316L stainless flux-cored wires with reduced Cr(VI) fume emissions: part 1â€"health aspects of particle composition and release of metals. Welding in the World, Le Soudage Dans Le Monde, 2021, 65, 2319-2337.	1.3	2
9	The contribution of Cr and Mo to the passivation of Ni22Cr and Ni22Cr10Mo alloys in sulfuric acid. Corrosion Science, 2020, 176, 109015.	3.0	39
10	Proliferation of Faulty Materials Data Analysis in the Literature. Microscopy and Microanalysis, 2020, 26, 1-2.	0.2	59
11	Preparation of Amine―and Disulfideâ€Containing PAMAMâ€Based Dendrons for the Functionalization of Hydroxylated Surfaces: XPS as Structural Sensor. ChemistrySelect, 2020, 5, 4875-4884.	0.7	20
12	Investigating the transport mechanisms governing the oxidation of Hastelloy BC-1 by in situ ToF-SIMS. Corrosion Science, 2019, 159, 108138.	3.0	17
13	The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans. Applied Surface Science, 2018, 447, 548-553.	3.1	149
14	Continuous Hydrothermal Decarboxylation of Fatty Acids and Their Derivatives into Liquid Hydrocarbons Using Mo/Al ₂ O ₃ Catalyst. ACS Omega, 2018, 3, 7046-7060.	1.6	28
15	Dye rejection membranes prepared from oxidized graphite particles. Canadian Journal of Chemistry, 2017, 95, 1103-1109.	0.6	4
16	Advanced analysis of copper Xâ€ray photoelectron spectra. Surface and Interface Analysis, 2017, 49, 1325-1334.	0.8	1,040
17	Application of quantitative Xâ€ray photoelectron spectroscopy (XPS) imaging: investigation of Niâ€Crâ€Mo alloys exposed to crevice corrosion solution. Surface and Interface Analysis, 2017, 49, 1345-1350.	0.8	14
18	The influence of chromium and molybdenum on the repassivation of nickelâ€chromiumâ€molybdenum alloys in saline solutions. Surface and Interface Analysis, 2017, 49, 1359-1365.	0.8	21

#	Article	IF	CITATIONS
19	The development of statistical <scp>ToF</scp> â€ <scp>SIMS</scp> applied to minerals recovery by froth flotation. Surface and Interface Analysis, 2017, 49, 1387-1396.	0.8	13
20	Surface Mobility and Nucleation of a Molecular Switch: Tetraaniline on Hematite. Journal of Physical Chemistry C, 2017, 121, 26350-26360.	1.5	1
21	Interfacial Charge Transfer between Phenyl-Capped Aniline Tetramer Films and Iron Oxide Surfaces. Journal of Physical Chemistry C, 2016, 120, 29248-29263.	1.5	85
22	Chemical state determination of molecular gallium compounds using XPS. Dalton Transactions, 2016, 45, 7678-7696.	1.6	82
23	An Azide-Functionalized Nitronyl Nitroxide Radical: Synthesis, Characterization and Staudinger–Bertozzi Ligation Reactivity. Synlett, 2016, 27, 304-308.	1.0	1
24	The Influence of Final-State Effects on XPS Spectra from First-Row Transition-Metals. Springer Series in Surface Sciences, 2016, , 217-262.	0.3	1
25	Small gold nanoparticles for interfacial Staudinger–Bertozzi ligation. Organic and Biomolecular Chemistry, 2015, 13, 4605-4612.	1.5	16
26	Synthesis of small water-soluble diazirine-functionalized gold nanoparticles and their photochemical modification. Canadian Journal of Chemistry, 2015, 93, 98-105.	0.6	2
27	Synthesis and characterization of novel TiO ₂ -poly(propylene fumarate) nanocomposites for bone cementation. Journal of Materials Chemistry B, 2014, 2, 5145-5156.	2.9	28
28	Ultrasmooth Gold Surfaces Prepared by Chemical Mechanical Polishing for Applications in Nanoscience. Langmuir, 2014, 30, 14171-14178.	1.6	22
29	Versatile strained alkyne modified water-soluble AuNPs for interfacial strain promoted azide–alkyne cycloaddition (I-SPAAC). Journal of Materials Chemistry B, 2014, 2, 1764-1769.	2.9	32
30	Gamma-radiolysis-assisted cobalt oxide nanoparticle formation. Physical Chemistry Chemical Physics, 2013, 15, 1014-1024.	1.3	73
31	The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. Physical Chemistry Chemical Physics, 2012, 14, 2434.	1.3	297
32	Developing ToFâ€SIMS methods for investigating the degradation of plastic debris on beaches. Surface and Interface Analysis, 2011, 43, 443-445.	0.8	15
33	Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011, 257, 2717-2730.	3.1	6,012
34	Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 2010, 257, 887-898.	3.1	2,987
35	First-Cycle Grain Weathering Processes: Compositions and Textures of Sea Glass from Port Allen, Kauai, Hawaii. Journal of Sedimentary Research, 2010, 80, 884-894. Toward a comprehensive understanding of solid-state core-level XPS linewidths: Experimental and	0.8	6
	theoretical studies on the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mtext>Si</mml:mtext><mml:mtext> </mml:mtext><mml:mn>2<td>l:mn><mm< td=""><td>l:mi>n</td></mm<></td></mml:mn></mml:mrow></mml:math>	l:mn> <mm< td=""><td>l:mi>n</td></mm<>	l:mi>n

display="inline"><mml:mrow><mml:mtext>Si</mml:mtext><amml:mtext> </mml:mtext><mml:mn>2</mml:mn>2</mml:mi>p</mml:ntext>amml:mi>p</mml:ntext>amml:mi>p</mml:ntext>amml:mi>p</mml:ntext>amml:mi>p</mml:mtext>amml:mi>p</mml:mtext>amml:mi>p</mml:mtext>amml:mi>p</mml:mtext><mml:mi>p</mml:mtext><mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi>p</mml:mi<p>amml:mi

#	Article	IF	CITATIONS
37	Plastics and beaches: A degrading relationship. Marine Pollution Bulletin, 2009, 58, 80-84.	2.3	478
38	Xâ€ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surface and Interface Analysis, 2009, 41, 324-332.	0.8	1,307
39	Quantitative chemical state XPS analysis of first row transition metals, oxides and hydroxides. Journal of Physics: Conference Series, 2008, 100, 012025.	0.3	71
40	Dependence of Crystal Growth of Gold Nanoparticles on the Capping Behavior of Surfactant at Ambient Conditions. Crystal Growth and Design, 2008, 8, 1713-1719.	1.4	85
41	The role of proximity caps during the annealing of UV-ozone oxidized GaAs. Journal of Applied Physics, 2007, 101, 114321.	1.1	13
42	X-ray photoelectron spectroscopic study of the formation of catalytic gold nanoparticles on ultraviolet-ozone oxidized GaAs(100) substrates. Journal of Applied Physics, 2007, 101, 114322.	1.1	40
43	Structure and growth of oxides on polycrystalline nickel surfaces. Surface and Interface Analysis, 2007, 39, 582-592.	0.8	71
44	Analysis of mineral surface chemistry in flotation separation using imaging XPS. Minerals Engineering, 2007, 20, 152-162.	1.8	85
45	Imaging lipid distributions in model monolayers by ToF-SIMS with selectively deuterated components and principal components analysis. Applied Surface Science, 2006, 252, 6957-6965.	3.1	30
46	New interpretations of XPS spectra of nickel metal and oxides. Surface Science, 2006, 600, 1771-1779.	0.8	1,663
47	Improved statistical methods applied to surface chemistry in minerals flotation. Minerals Engineering, 2006, 19, 790-798.	1.8	34
48	XPS imaging investigations of pitting corrosion mechanisms in Inconel 600. Surface and Interface Analysis, 2005, 37, 478-494.	0.8	16
49	X-ray photoelectron spectroscopy studies of chromium compounds. Surface and Interface Analysis, 2004, 36, 1550-1563.	0.8	419
50	Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis, 2004, 36, 1564-1574.	0.8	2,742
51	Principal Component Analysis of TOF-SIMS Images of Organic Monolayers. Analytical Chemistry, 2002, 74, 5711-5716.	3.2	92
52	Interactions of CO2 and CO at fractional atmosphere pressures with iron and iron oxide surfaces: one possible mechanism for surface contamination?. Surface and Interface Analysis, 2002, 33, 299-305.	0.8	234