
Nimitha S Prabhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5131128/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigations on structural and radiation shielding properties of Er3+ doped zinc bismuth borate glasses. Materials Chemistry and Physics, 2019, 230, 267-276.	2.0	61
2	Physical, structural and optical properties of Sm3+ doped lithium zinc alumino borate glasses. Journal of Non-Crystalline Solids, 2019, 515, 116-124.	1.5	58
3	Role of Bi2O3 in altering the structural, optical, mechanical, radiation shielding and thermoluminescence properties of heavy metal oxide borosilicate glasses. Journal of Non-Crystalline Solids, 2020, 542, 120136.	1.5	30
4	Evaluation of structural and gamma ray shielding competence of Li2O-K2O-B2O3-HMO (HMO =) Tj ETQq0 0 0 rg	BT /Overl 1.4	lock 10 Tf 50 6
5	Investigations on the physical, structural, optical and photoluminescence behavior of Er3+ ions in lithium zinc fluoroborate glass system. Infrared Physics and Technology, 2019, 98, 7-15.	1.3	29
6	Dy3+ doped SiO2–B2O3–Al2O3–NaF–ZnF2 glasses: An exploration of optical and gamma radiation shielding features. Current Applied Physics, 2020, 20, 1207-1216.	1,1	26
7	Thermoluminescence features of Er3+ doped BaO-ZnO-LiF-B2O3 glass system for high-dose gamma dosimetry. Ceramics International, 2020, 46, 19343-19353.	2.3	25
8	Dy3+: B2O3–Al2O3–ZnF2–NaF/LiF oxyfluoride glasses for cool white or day white light-emitting applications. Optical Materials, 2020, 108, 110186.	1.7	19
9	An examination of the radiation-induced defects and thermoluminescence characteristics of Sm2O3 doped BaO–ZnO–LiF–B2O3 glass system for γ-dosimetry application. Optical Materials, 2021, 118, 1112	52 <mark>1.7</mark>	18
10	Correlative exploration of structural and dielectric properties with Er2O3 addition in BaO–ZnO–LiF–B2O3 glasses. Journal of Alloys and Compounds, 2020, 832, 154996.	2.8	17
11	Spectroscopic study of Er3+ doped borate glass system for green emission device, NIR laser, and optical amplifier applications. Journal of Luminescence, 2021, 238, 118216.	1.5	16
12	0.25–30ÂkGy γ Irradiation-induced modifications on the density, optical absorption, thermo-, and photo-luminescence of the 10BaO–20ZnO–20LiF-49.3B2O3-0.7Er2O3 glass. Journal of Luminescence, 2021, 231, 117820.	1.5	13
13	Structural, dielectric, optical and photoluminescence studies of Tm3+ doped B2O3-BaO-MgO-Li2O-Na2O-LiF glasses featuring strong blue emission. Journal of Non-Crystalline Solids, 2021, 560, 120733.	1.5	11
14	Thermoluminescence investigations of Ca2Al2SiO7: Dy3+ phosphor for gamma dosimetry applications. Materials Chemistry and Physics, 2022, 281, 125872.	2.0	11
15	Reddish-orange emission from sol-gel derived Sm3+-doped Sr2La8(SiO4)6O2 phosphors. Optik, 2021, 227, 165935.	1.4	9
16	Enhanced thermoluminescence intensity, stability, and sensitivity of the Yb3+ doped BaO–ZnO–LiF–B2O3 glass by Sm3+ co-doping. Materials Chemistry and Physics, 2021, 271, 124906.	2.0	9
17	Influence of Bi2O3 on Mechanical Properties and Radiation-Shielding Performance of Lithium Zinc Bismuth Silicate Class System Using Phys-X Software. Materials, 2022, 15, 1327.	1.3	9
18	Structural and Optical Modifications in the BaO-ZnO-LiF-B2O3-Yb2O3 Glass System after Î ³ -Irradiation. Materials, 2021, 14, 6955.	1.3	7

2

Nimitha S Prabhu

#	Article	IF	CITATIONS
19	Synthesis and characterization of Sm3+ doped BaO-ZnO-LiF-B2O3 glass system for reddish-orange light generation with high color purity. Optics and Laser Technology, 2022, 155, 108359.	2.2	6
20	Exploration of the B2O3-Bi2O3-MoO3 glass system based on its physical, optical, and gamma ray shielding capabilities. Optik, 2021, 248, 168177.	1.4	2
21	Green emission features of erbium doped lithium zinc borate glasses. AIP Conference Proceedings, 2020, , .	0.3	2
22	Comparing basic radiation attenuation factors of tellurite glasses containing PbCl2 and Bi2O3 with some other potential glass systems. Optik, 2021, , 168247.	1.4	2
23	Effect of ZnO on radiation shielding competence of TeO2-ZnO-Fe2O3 glass system. Optik, 2022, 249, 168270.	1.4	2
24	Network-modifying role of Er3+ ions on the structural, optical, mechanical, and radiation shielding properties of ZnF2–BaO–Al2O3–Li2O–B2O3 glass. Radiation Physics and Chemistry, 2022, 200, 110228	. ^{1.4}	2
25	Impact of replacement of B2O3 by TeO2 on the physical, optical and gamma ray shielding characteristics of Pb-free B2O3-TeO2-ZnO-Al2O3-Li2O-MgO glass system. Optik, 2021, 248, 168100.	1.4	1
26	Consequences of doping Er3+ and Yb3+ ions on the thermoluminescence dosimetry performance of the BaO-ZnO-LiF-B2O3-Sm2O3 glass system. Journal of Non-Crystalline Solids, 2022, 582, 121460.	1.5	1
27	Thermoluminescence dosimetric attributes of Yb ³⁺ â€doped BaO–ZnO–LiF–B ₂ O ₃ glass material after Er ³⁺ coâ€doping. Luminescence, 2022, , .	1.5	1
28	Mechanical property evaluation of tellurite–germanate glasses and comparison of their radiation-shielding characteristics using EPICS2017 to other glass systems. Open Chemistry, 2022, 20, 361-369.	1.0	1
29	Exploring the optical gamma radiation shielding features of barium and zinc doped fluorotellurite glasses: A comparative study with other glass systems, Optik, 2021, 168175.	1.4	0