
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5131030/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transient Focal Ischemia Induces Extensive Temporal Changes in Rat Cerebral MicroRNAome. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 675-687.	4.3	435
2	Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Frontiers in Bioscience - Landmark, 2008, 13, 1813.	3.0	356
3	Monocyte Chemoattractant Protein-1 Plays a Critical Role in Neuroblast Migration after Focal Cerebral Ischemia. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1213-1224.	4.3	245
4	Thiazolidinedione Class of Peroxisome Proliferator-Activated Receptor Î ³ Agonists Prevents Neuronal Damage, Motor Dysfunction, Myelin Loss, Neuropathic Pain, and Inflammation after Spinal Cord Injury in Adult Rats. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 1002-1012.	2.5	216
5	JAK2 and STAT3 activation contributes to neuronal damage following transient focal cerebral ischemia. Journal of Neurochemistry, 2006, 98, 1353-1368.	3.9	201
6	Role of circular RNAs in brain development and CNS diseases. Progress in Neurobiology, 2020, 186, 101746.	5.7	195
7	Crosstalk Between Endoplasmic Reticulum Stress, Oxidative Stress, and Autophagy: Potential Therapeutic Targets for Acute CNS Injuries. Molecular Neurobiology, 2016, 53, 532-544.	4.0	194
8	Peroxisome proliferator-activated receptor-Î ³ agonists induce neuroprotection following transient focal ischemia in normotensive, normoglycemic as well as hypertensive and type-2 diabetic rodents. Journal of Neurochemistry, 2006, 101, 41-56.	3.9	190
9	PPARÎ ³ agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms. Brain Research, 2008, 1244, 164-172.	2.2	185
10	Role of transcription factors in mediating post-ischemic cerebral inflammation and brain damage. Neurochemistry International, 2007, 50, 1014-1027.	3.8	184
11	Effect of Focal Ischemia on Long Noncoding RNAs. Stroke, 2012, 43, 2800-2802.	2.0	173
12	Putative endogenous mediators of preconditioningâ€induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. Journal of Neurochemistry, 2004, 89, 73-89.	3.9	157
13	Infarct volume quantification in mouse focal cerebral ischemia: a comparison of triphenyltetrazolium chloride and cresyl violet staining techniques. Journal of Neuroscience Methods, 2004, 139, 203-207.	2.5	147
14	Repairing brain after stroke: A review on post-ischemic neurogenesis. Neurochemistry International, 2007, 50, 1028-1041.	3.8	147
15	Circular RNA Expression Profiles Alter Significantly in Mouse Brain After Transient Focal Ischemia. Stroke, 2017, 48, 2541-2548.	2.0	143
16	Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochemistry International, 2015, 89, 75-82.	3.8	130
17	Impact of microRNAs on ischemic stroke: From pre- to post-disease. Progress in Neurobiology, 2018, 163-164, 59-78.	5.7	127
18	Inhibition of Intercellular Adhesion Molecule-1 Protein Expression by Antisense Oligonucleotides Is Neuroprotective After Transient Middle Cerebral Artery Occlusion in Rat. Stroke, 2004, 35, 179-184.	2.0	119

#	Article	IF	CITATIONS
19	Long Noncoding RNA FosDT Promotes Ischemic Brain Injury by Interacting with REST-Associated Chromatin-Modifying Proteins. Journal of Neuroscience, 2015, 35, 16443-16449.	3.6	118
20	Transient Focal Ischemia Significantly Alters the m ⁶ A Epitranscriptomic Tagging of RNAs in the Brain. Stroke, 2019, 50, 2912-2921.	2.0	114
21	Decreased brain damage and curtailed inflammation in transcription factor CCAAT/enhancer binding protein β knockout mice following transient focal cerebral ischemia. Journal of Neurochemistry, 2006, 98, 1718-1731.	3.9	105
22	Altered Expression of PIWI RNA in the Rat Brain After Transient Focal Ischemia. Stroke, 2011, 42, 1105-1109.	2.0	97
23	MicroRNA miR-29c Down-Regulation Leading to De-Repression of Its Target DNA Methyltransferase 3a Promotes Ischemic Brain Damage. PLoS ONE, 2013, 8, e58039.	2.5	96
24	MicroRNA miR-324-3p Induces Promoter-Mediated Expression of RelA Gene. PLoS ONE, 2013, 8, e79467.	2.5	94
25	Exacerbated brain damage, edema and inflammation in type-2 diabetic mice subjected to focal ischemia. Journal of Neurochemistry, 2011, 116, 499-507.	3.9	93
26	Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochemistry International, 2017, 111, 12-22.	3.8	91
27	Ischemic preâ€conditioning alters cerebral microRNAs that are upstream to neuroprotective signaling pathways. Journal of Neurochemistry, 2010, 113, 1685-1691.	3.9	83
28	Poststroke Induction of Â-Synuclein Mediates Ischemic Brain Damage. Journal of Neuroscience, 2016, 36, 7055-7065.	3.6	79
29	Mitochondrial fission and fusion in secondary brain damage after CNS insults. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 2022-2033.	4.3	78
30	The microRNA miR-7a-5p ameliorates ischemic brain damage by repressing α-synuclein. Science Signaling, 2018, 11, .	3.6	78
31	The potential of neural stem cells to repair stroke-induced brain damage. Acta Neuropathologica, 2009, 117, 469-480.	7.7	77
32	A Review of Carotid Atherosclerosis and Vascular Cognitive Decline. Neurosurgery, 2010, 67, 484-494.	1.1	76
33	Increased Binding of Stroke-Induced Long Non-Coding RNAs to the Transcriptional Corepressors Sin3A and coREST. ASN Neuro, 2013, 5, AN20130029.	2.7	70
34	Matrix Metalloproteinase-12 Induces Blood–Brain Barrier Damage After Focal Cerebral Ischemia. Stroke, 2015, 46, 3523-3531.	2.0	63
35	A combination antioxidant therapy to inhibit NOX2 and activate Nrf2 decreases secondary brain damage and improves functional recovery after traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1818-1827.	4.3	62
36	All's well that transcribes well: Non-coding RNAs and post-stroke brain damage. Neurochemistry International, 2013, 63, 438-449.	3.8	61

#	Article	IF	CITATIONS
37	Transcription factor early growth responseâ€l induction mediates inflammatory gene expression and brain damage following transient focal ischemia. Journal of Neurochemistry, 2008, 105, 1313-1324.	3.9	57
38	Mechanisms of Parkinson's disease-related proteins in mediating secondary brain damage after cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 1910-1926.	4.3	51
39	Epitranscriptomic regulation by m ⁶ A RNA methylation in brain development and diseases. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 2331-2349.	4.3	46
40	Chronic kidney disease in the pathogenesis of acute ischemic stroke. Journal of Cerebral Blood Flow and Metabolism, 2019, 39, 1893-1905.	4.3	45
41	Age and sex differences in the pathophysiology of acute CNS injury. Neurochemistry International, 2019, 127, 22-28.	3.8	45
42	Increased Angiogenesis and Angiogenic Gene Expression in Carotid Artery Plaques from Symptomatic Stroke Patients. Neurosurgery, 2006, 58, 971-977.	1.1	44
43	Effect of Sex and Age Interactions on Functional Outcome after Stroke. CNS Neuroscience and Therapeutics, 2015, 21, 327-336.	3.9	44
44	The MicroRNAs and Stroke: No Need to be Coded to be Counted. Translational Stroke Research, 2010, 1, 158-160.	4.2	43
45	Gene expression changes in thalamus and inferior colliculus associated with inflammation, cellular stress, metabolism and structural damage in thiamine deficiency. European Journal of Neuroscience, 2006, 23, 1172-1188.	2.6	42
46	MMP-12, a Promising Therapeutic Target for Neurological Diseases. Molecular Neurobiology, 2018, 55, 1405-1409.	4.0	39
47	Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochemistry International, 2020, 133, 104642.	3.8	37
48	Mutual induction of transcription factor <scp>PPAR</scp> γ and micro <scp>RNA</scp> s miRâ€145 and miRâ€329. Journal of Neurochemistry, 2015, 135, 139-146.	3.9	36
49	Increased Cerebral Protein ISGylation after Focal Ischemia is Neuroprotective. Journal of Cerebral Blood Flow and Metabolism, 2011, 31, 2375-2384.	4.3	34
50	Transcriptome analysis reveals intermittent fasting-induced genetic changes in ischemic stroke. Human Molecular Genetics, 2018, 27, 1497-1513.	2.9	34
51	Modeling Transient Focal Ischemic Stroke in Rodents by Intraluminal Filament Method of Middle Cerebral Artery Occlusion. Methods in Molecular Biology, 2018, 1717, 101-113.	0.9	32
52	Inhibition of miR-141-3p Ameliorates the Negative Effects of Poststroke Social Isolation in Aged Mice. Stroke, 2018, 49, 1701-1707.	2.0	29
53	Noncoding RNA crosstalk in brain health and diseases. Neurochemistry International, 2021, 149, 105139.	3.8	27
54	Induction of DNA Hydroxymethylation Protects the Brain After Stroke. Stroke, 2019, 50, 2513-2521.	2.0	26

#	Article	IF	CITATIONS
55	Antioxidant therapies in traumatic brain injury. Neurochemistry International, 2022, 152, 105255.	3.8	23
56	Decreased expression of vesicular GABA transporter, but not vesicular glutamate, acetylcholine and monoamine transporters in rat brain following focal ischemia. Neurochemistry International, 2005, 47, 136-142.	3.8	21
57	TET3 regulates DNA hydroxymethylation of neuroprotective genes following focal ischemia. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 590-603.	4.3	19
58	DNA damage and repair following traumatic brain injury. Neurobiology of Disease, 2021, 147, 105143.	4.4	19
59	Prevention of the Severity of Post-ischemic Inflammation and Brain Damage by Simultaneous Knockdown of Toll-like Receptors 2 and 4. Neuroscience, 2018, 373, 82-91.	2.3	18
60	Inhibition of the Epigenetic Regulator REST Ameliorates Ischemic Brain Injury. Molecular Neurobiology, 2019, 56, 2542-2550.	4.0	18
61	Resveratrol preconditioning induces cerebral ischemic tolerance but has minimal effect on cerebral microRNA profiles. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1644-1650.	4.3	17
62	Long Noncoding RNA Fos Downstream Transcript Is Developmentally Dispensable but Vital for Shaping the Poststroke Functional Outcome. Stroke, 2021, 52, 2381-2392.	2.0	17
63	New Mechanistic Insights, Novel Treatment Paradigms, and Clinical Progress in Cerebrovascular Diseases. Frontiers in Aging Neuroscience, 2021, 13, 623751.	3.4	17
64	Recent progress in translational research on neurovascular and neurodegenerative disorders. Restorative Neurology and Neuroscience, 2017, 35, 87-103.	0.7	16
65	CXCL13 expressed on inflamed cerebral blood vessels recruit IL-21 producing TFH cells to damage neurons following stroke. Journal of Neuroinflammation, 2022, 19, .	7.2	16
66	Deletion of ubiquitin ligase Nedd4l exacerbates ischemic brain damage. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1058-1066.	4.3	14
67	Epitranscriptomic Modifications Modulate Normal and Pathological Functions in CNS. Translational Stroke Research, 2022, 13, 1-11.	4.2	14
68	Tenascin-C induction exacerbates post-stroke brain damage. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 253-263.	4.3	13
69	Acute liver failure-induced hepatic encephalopathy is associated with changes in microRNA expression profiles in cerebral cortex of the rat. Metabolic Brain Disease, 2014, 29, 891-899.	2.9	11
70	High-Dose Vitamin C Prevents Secondary Brain Damage After Stroke via Epigenetic Reprogramming of Neuroprotective Genes. Translational Stroke Research, 2022, 13, 1017-1036.	4.2	11
71	Impact of Age and Sex on α-Syn (α-Synuclein) Knockdown-Mediated Poststroke Recovery. Stroke, 2020, 51, 3138-3141.	2.0	10
72	Therapeutic potential of nutraceuticals to protect brain after stroke. Neurochemistry International, 2021, 142, 104908.	3.8	10

#	Article	IF	CITATIONS
73	Microarray Profiling Reveals Distinct Circulating miRNAs in Aged Male and Female Mice Subjected to Post-stroke Social Isolation. NeuroMolecular Medicine, 2021, 23, 305-314.	3.4	10
74	Integrative epigenomic and transcriptomic analyses reveal metabolic switching by intermittent fasting in brain. GeroScience, 2022, 44, 2171-2194.	4.6	10
75	Increased expression of genes that control ionic homeostasis, second messenger signaling and metabolism in the carotid plaques from patients with symptomatic stroke. Journal of Neurochemistry, 2006, 97, 92-96.	3.9	9
76	Antioxidant Combo Therapy Protects White Matter After Traumatic Brain Injury. NeuroMolecular Medicine, 2021, 23, 344-347.	3.4	9
77	MicroRNA miR-7 Is Essential for Post-stroke Functional Recovery. Translational Stroke Research, 2023, 14, 111-115.	4.2	9
78	Acute liver failure is associated with altered cerebral expression profiles of long non-coding RNAs. Neuroscience Letters, 2017, 656, 58-64.	2.1	7
79	MicroRNA miR-21 Decreases Post-stroke Brain Damage in Rodents. Translational Stroke Research, 2022, 13, 483-493.	4.2	7
80	Ischemic Stroke Alters the Expression of the Transcribed Ultraconserved Regions of the Genome in Rat Brain. Stroke, 2018, 49, 1024-1028.	2.0	6
81	Much ado about eating: Intermittent fasting and post-stroke neuroprotection. Journal of Cerebral Blood Flow and Metabolism, 2021, 41, 1791-1793.	4.3	6
82	Stroke: Molecular Mechanisms and Therapies. NeuroMolecular Medicine, 2019, 21, 323-324.	3.4	5
83	Expression of transcribed ultraconserved regions of genome in rat cerebral cortex. Neurochemistry International, 2014, 77, 86-93.	3.8	4
84	Role of autophagy and transcriptome regulation in acute brain injury. Experimental Neurology, 2022, 352, 114032.	4.1	4
85	Gut virome dysbiosis following focal cerebral ischemia in mice. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1597-1602.	4.3	4
86	Cellular and molecular mechanisms of neuroprotection and plasticity after traumatic brain injury. Neurochemistry International, 2017, 111, 1-2.	3.8	3
87	Molecular Mechanisms of Intermittent Fasting-induced Ischemic Tolerance. Conditioning Medicine, 2020, 3, 9-17.	1.3	3
88	Dysregulation of the Epitranscriptomic Mark m1A in Ischemic Stroke. Translational Stroke Research, 0, , .	4.2	3
89	Long noncoding RNAs and CNS disorders. Neurochemistry International, 2021, 150, 105176.	3.8	2
90	Non-coding RNAs in CNS disorders – The long and short of it. Neurochemistry International, 2014, 77, 1.	3.8	1

#	Article	IF	CITATIONS
91	Mechanisms and therapies for acute CNS insults. Metabolic Brain Disease, 2015, 30, 353-353.	2.9	1
92	Age and sex differences in post-ischemic outcome and therapy. Neurochemistry International, 2019, 127, 104472.	3.8	1
93	Effects of Cardiac Sympathetic Neurodegeneration and PPARÎ ³ Activation on Rhesus Macaque Whole Blood miRNA and mRNA Expression Profiles. BioMed Research International, 2020, 2020, 1-13.	1.9	1
94	Mechanisms of hepatic encephalopathy and thiamine deficiency. Metabolic Brain Disease, 2014, 29, 889-890.	2.9	0
95	PPAR-Î ³ agonist rosiglitazone decreases focal cerebral ischemia-induced inflammation and brain damage in adult mice. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S94-S94.	4.3	0
96	The microRNA miR-21 conditions the brain to protect against ischemic and traumatic injuries. Conditioning Medicine, 2017, 1, 35-46.	1.3	0
97	Oxidative stress in chronic and acute CNS insults. Neurochemistry International, 2022, 153, 105274.	3.8	0