Krishanpal Karmodiya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5130927/publications.pdf

Version: 2024-02-01

38 papers

1,469 citations

16 h-index 37 g-index

45 all docs

45 docs citations

times ranked

45

2823 citing authors

#	Article	IF	CITATIONS
1	H3K9 and H3K14 acetylation co-occur at many gene regulatory elements, while H3K14ac marks a subset of inactive inducible promoters in mouse embryonic stem cells. BMC Genomics, 2012, 13, 424.	2.8	409
2	Synthesis and exploration of novel curcumin analogues as anti-malarial agents. Bioorganic and Medicinal Chemistry, 2008, 16, 2894-2902.	3.0	129
3	The Tightly Controlled Deubiquitination Activity of the Human SAGA Complex Differentially Modifies Distinct Gene Regulatory Elements. Molecular and Cellular Biology, 2011, 31, 3734-3744.	2.3	113
4	SAGA and ATAC Histone Acetyl Transferase Complexes Regulate Distinct Sets of Genes and ATAC Defines a Class of p300-Independent Enhancers. Molecular Cell, 2011, 44, 410-423.	9.7	106
5	Discovery of a Rhodanine Class of Compounds as Inhibitors ofPlasmodium falciparumEnoyl-Acyl Carrier Protein Reductase. Journal of Medicinal Chemistry, 2007, 50, 2665-2675.	6.4	95
6	Inhibitors of Nonhousekeeping Functions of the Apicoplast Defy Delayed Death in Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 2007, 51, 307-316.	3.2	79
7	A comprehensive epigenome map of Plasmodium falciparum reveals unique mechanisms of transcriptional regulation and identifies H3K36me2 as a global mark of gene suppression. Epigenetics and Chromatin, 2015, 8, 32.	3.9	55
8	HOXA repression is mediated by nucleoporin Nup93 assisted by its interactors Nup188 and Nup205. Epigenetics and Chromatin, 2016, 9, 54.	3.9	46
9	15-Deoxyspergualin Primarily Targets the Trafficking of Apicoplast Proteins in Plasmodium falciparum. Journal of Biological Chemistry, 2007, 282, 6388-6397.	3.4	44
10	ATAC and Mediator coactivators form a stable complex and regulate a set of nonâ€coding RNA genes. EMBO Reports, 2010, 11, 541-547.	4.5	44
11	Genomeâ€wide survey and phylogenetic analysis of histone acetyltransferases and histone deacetylases of <i>Plasmodium falciparum</i> . FEBS Journal, 2018, 285, 1767-1782.	4.7	38
12	Camello, a novel family of Histone Acetyltransferases that acetylate histone H4 and is essential for zebrafish development. Scientific Reports, 2014, 4, 6076.	3.3	30
13	Dmrt5, a Novel Neurogenic Factor, Reciprocally Regulates Lhx2 to Control the Neuron–Glia Cell-Fate Switch in the Developing Hippocampus. Journal of Neuroscience, 2017, 37, 11245-11254.	3 . 6	28
14	Mass Spectrometry-Based Systems Approach for Identification of Inhibitors of Plasmodium falciparum Fatty Acid Synthase. Antimicrobial Agents and Chemotherapy, 2007, 51, 2552-2558.	3.2	26
15	Analyses of co-operative transitions in Plasmodium falciparumβ-ketoacyl acyl carrier protein reductase upon co-factor and acyl carrier protein binding. FEBS Journal, 2006, 273, 4093-4103.	4.7	24
16	Design, synthesis, and application of novel triclosan prodrugs as potential antimalarial and antibacterial agents. Bioorganic and Medicinal Chemistry, 2008, 16, 5536-5546.	3.0	20
17	Histone acetyltransferase PfGCN5 regulates stress responsive and artemisinin resistance related genes in Plasmodium falciparum. Scientific Reports, 2021, 11, 852.	3.3	16
18	Single-Cell RNA Sequencing Reveals Cellular Heterogeneity and Stage Transition under Temperature Stress in Synchronized Plasmodium falciparum Cells. Microbiology Spectrum, 2021, 9, e0000821.	3.0	16

#	Article	IF	CITATIONS
19	Peroxidation of 2-oxindole and barbituric acid derivatives under batch and continuous flow using an eco-friendly ethyl acetate solvent. Reaction Chemistry and Engineering, 2019, 4, 1277-1283.	3.7	15
20	Isolation and structure elucidation of halymeniaol, a new antimalarial sterol derivative from the red alga <i>Halymenia floresii</i> Journal of Asian Natural Products Research, 2018, 20, 391-398.	1.4	13
21	Effect of climate change and deforestation on vector borne diseases in the North-Eastern Indian State of Mizoram bordering Myanmar. The Journal of Climate Change and Health, 2021, 2, 100015.	2.7	12
22	Genome-wide identification of novel intergenic enhancer-like elements: implications in the regulation of transcription in Plasmodium falciparum. BMC Genomics, 2017, 18, 656.	2.8	10
23	Nup93 and CTCF modulate spatiotemporal dynamics and function of the <i>HOXA</i> gene locus during differentiation. Journal of Cell Science, 2021, 134, .	2.0	10
24	Role of PfGCN5 in nutrient sensing and transcriptional regulation in Plasmodium falciparum. Journal of Biosciences, 2020, 45, $1.$	1.1	9
25	Autophagy Underlies the Proteostasis Mechanisms of Artemisinin Resistance in P. falciparum Malaria. MBio, 2022, 13, e0063022.	4.1	9
26	Ru-Catalyzed dehydrogenative synthesis of antimalarial arylidene oxindoles. Organic and Biomolecular Chemistry, 2018, 16, 7223-7229.	2.8	8
27	Identification of Co-Existing Mutations and Gene Expression Trends Associated With K13-Mediated Artemisinin Resistance in Plasmodium falciparum. Frontiers in Genetics, 2022, 13, 824483.	2.3	7
28	A unique and differential effect of denaturants on cofactor mediated activation of <i>Plasmodium falciparum</i> βâ€ketoacylâ€ACP reductase. Proteins: Structure, Function and Bioinformatics, 2008, 70, 528-538.	2.6	5
29	Deciphering the key residues in <i>Plasmodium falciparum</i> βâ€ketoacyl acyl carrier protein reductase responsible for interactions with <i>Plasmodium falciparum</i> acyl carrier protein. FEBS Journal, 2008, 275, 4756-4766.	4.7	5
30	Dynamic association of the H3K64 trimethylation mark with genes encoding exported proteins in Plasmodium falciparum. Journal of Biological Chemistry, 2021, 296, 100614.	3.4	5
31	Production and purification of refolded recombinant Plasmodium falciparum \hat{l}^2 -ketoacyl-ACP reductase from inclusion bodies. Protein Expression and Purification, 2005, 42, 131-136.	1.3	4
32	Plasmodium falciparum epigenome: A distinct dynamic epigenetic regulation of gene expression. Genomics Data, 2016, 7, 79-81.	1.3	4
33	Pervasive sequence-level variation in the transcriptome of <i>Plasmodium falciparum</i> . NAR Genomics and Bioinformatics, 2022, 4, Iqac036.	3.2	3
34	Origin of RNA Polymerase II pause in eumetazoans: Insights from Hydra. Journal of Biosciences, 2020, 45, 1.	1.1	2
35	Analysis of drug resistance marker genes of Plasmodium falciparum after implementation of artemisinin-based combination therapy in Pune district, India. Journal of Biosciences, 2021, 46, 1.	1.1	2
36	Role of PfGCN5 in nutrient sensing and transcriptional regulation in. Journal of Biosciences, 2020, 45,	1.1	2

3

#	Article	IF	CITATIONS
37	Chromodomain Protein Interacts with H3K9me3 and Controls RBC Rosette Formation by Regulating the Expression of a Subset of RIFINs in the Malaria Parasite. Journal of Molecular Biology, 2022, 434, 167601.	4.2	2
38	Epigenetics in infectious disease. , 2019, , 171-201.		1