Qixiao Zhai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/513065/publications.pdf Version: 2024-02-01

Οιχιλο Ζηλι

#	Article	IF	CITATIONS
1	A next generation probiotic, <i>Akkermansia muciniphila</i> . Critical Reviews in Food Science and Nutrition, 2019, 59, 3227-3236.	5.4	244
2	Dietary Strategies for the Treatment of Cadmium and Lead Toxicity. Nutrients, 2015, 7, 552-571.	1.7	217
3	Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microbial Cell Factories, 2020, 19, 23.	1.9	201
4	Protective Effects of Lactobacillus plantarum CCFM8610 against Acute Cadmium Toxicity in Mice. Applied and Environmental Microbiology, 2013, 79, 1508-1515.	1.4	170
5	Oral Administration of Probiotics Inhibits Absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier. Applied and Environmental Microbiology, 2016, 82, 4429-4440.	1.4	157
6	Protective Effects of Lactobacillus plantarum CCFM8610 against Chronic Cadmium Toxicity in Mice Indicate Routes of Protection besides Intestinal Sequestration. Applied and Environmental Microbiology, 2014, 80, 4063-4071.	1.4	123
7	Investigations of Bacteroides spp. towards next-generation probiotics. Food Research International, 2019, 116, 637-644.	2.9	121
8	Gut microbiota: A target for heavy metal toxicity and a probiotic protective strategy. Science of the Total Environment, 2020, 742, 140429.	3.9	112
9	Screening of lactic acid bacteria with potential protective effects against cadmium toxicity. Food Control, 2015, 54, 23-30.	2.8	109
10	Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie Van Leeuwenhoek, 2017, 110, 501-513.	0.7	93
11	Novel strains of Bacteroides fragilis and Bacteroides ovatus alleviate the LPS-induced inflammation in mice. Applied Microbiology and Biotechnology, 2019, 103, 2353-2365.	1.7	93
12	The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression. International Journal of Biological Macromolecules, 2020, 164, 884-891.	3.6	91
13	Effects of Dietary Selenium Supplementation on Intestinal Barrier and Immune Responses Associated with Its Modulation of Gut Microbiota. Environmental Science and Technology Letters, 2018, 5, 724-730.	3.9	90
14	Disturbance of trace element and gut microbiota profiles as indicators of autism spectrum disorder: A pilot study of Chinese children. Environmental Research, 2019, 171, 501-509.	3.7	82
15	Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota. Microbiological Research, 2020, 233, 126409.	2.5	82
16	<i>Lactobacillus plantarum</i> CCFM10 alleviating oxidative stress and restoring the gut microbiota in <scp>d</scp> -galactose-induced aging mice. Food and Function, 2018, 9, 917-924.	2.1	69
17	Meta-analysis of randomized controlled trials of the effects of probiotics on functional constipation in adults. Clinical Nutrition, 2020, 39, 2960-2969.	2.3	69
18	Roles of intestinal <i>bacteroides</i> in human health and diseases. Critical Reviews in Food Science and Nutrition, 2021, 61, 3518-3536.	5.4	66

#	Article	IF	CITATIONS
19	A potential species of next-generation probiotics? The dark and light sides of Bacteroides fragilis in health. Food Research International, 2019, 126, 108590.	2.9	65
20	Structural and Functional Alterations in the Microbial Community and Immunological Consequences in a Mouse Model of Antibiotic-Induced Dysbiosis. Frontiers in Microbiology, 2018, 9, 1948.	1.5	62
21	<i>Lactobacillus plantarum</i> CCFM8661 modulates bile acid enterohepatic circulation and increases lead excretion in mice. Food and Function, 2019, 10, 1455-1464.	2.1	58
22	Antibiotic-induced gut dysbiosis and barrier disruption and the potential protective strategies. Critical Reviews in Food Science and Nutrition, 2022, 62, 1427-1452.	5.4	56
23	Identification of key proteins and pathways in cadmium tolerance of Lactobacillus plantarum strains by proteomic analysis. Scientific Reports, 2017, 7, 1182.	1.6	54
24	Restoration of cefixime-induced gut microbiota changes by Lactobacillus cocktails and fructooligosaccharides in a mouse model. Microbiological Research, 2017, 200, 14-24.	2.5	54
25	Protective effects of different Bacteroides vulgatus strains against lipopolysaccharide-induced acute intestinal injury, and their underlying functional genes. Journal of Advanced Research, 2022, 36, 27-37.	4.4	53
26	Progress in the distribution, toxicity, control, and detoxification of patulin: A review. Toxicon, 2020, 184, 83-93.	0.8	48
27	Dietary Lactobacillus plantarum supplementation enhances growth performance and alleviates aluminum toxicity in tilapia. Ecotoxicology and Environmental Safety, 2017, 143, 307-314.	2.9	47
28	Dietary <i>Lactobacillus plantarum</i> supplementation decreases tissue lead accumulation and alleviates lead toxicity in Nile tilapia (<i>Oreochromis niloticus</i>). Aquaculture Research, 2017, 48, 5094-5103.	0.9	46
29	Oral Supplementation of Lead-Intolerant Intestinal Microbes Protects Against Lead (Pb) Toxicity in Mice. Frontiers in Microbiology, 2019, 10, 3161.	1.5	44
30	Gut Colonization Mechanisms of <i>Lactobacillus</i> and <i>Bifidobacterium</i> : An Argument for Personalized Designs. Annual Review of Food Science and Technology, 2021, 12, 213-233.	5.1	44
31	Dietary supplementation with probiotics regulates gut microbiota structure and function in Nile tilapia exposed to aluminum. PeerJ, 2019, 7, e6963.	0.9	42
32	Increased Cadmium Excretion Due to Oral Administration of <i>Lactobacillus plantarum</i> Strains by Regulating Enterohepatic Circulation in Mice. Journal of Agricultural and Food Chemistry, 2019, 67, 3956-3965.	2.4	41
33	Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. Clinical Nutrition, 2020, 39, 1315-1323.	2.3	40
34	Modulation of the gut microbiota by a galactooligosaccharide protects against heavy metal lead accumulation in mice. Food and Function, 2019, 10, 3768-3781.	2.1	38
35	Screening of Lactobacillus salivarius strains from the feces of Chinese populations and the evaluation of their effects against intestinal inflammation in mice. Food and Function, 2020, 11, 221-235.	2.1	38
36	Identification of the key physiological characteristics of <i>Lactobacillus plantarum</i> strains for ulcerative colitis alleviation. Food and Function, 2020, 11, 1279-1291.	2.1	38

#	Article	IF	CITATIONS
37	Protective Effects of Lactobacillus plantarum CCFM8246 against Copper Toxicity in Mice. PLoS ONE, 2015, 10, e0143318.	1.1	37
38	Chinese gut microbiota and its associations with staple food type, ethnicity, and urbanization. Npj Biofilms and Microbiomes, 2021, 7, 71.	2.9	37
39	Potential of Lactobacillus plantarum CCFM639 in Protecting against Aluminum Toxicity Mediated by Intestinal Barrier Function and Oxidative Stress. Nutrients, 2016, 8, 783.	1.7	35
40	The cadmium binding characteristics of a lactic acid bacterium in aqueous solutions and its application for removal of cadmium from fruit and vegetable juices. RSC Advances, 2016, 6, 5990-5998.	1.7	34
41	The binding characters study of lead removal by Lactobacillus plantarum CCFM8661. European Food Research and Technology, 2016, 242, 1621-1629.	1.6	33
42	Lactobacillus plantarum CCFM639 Alleviate Trace Element Imbalance-Related Oxidative Stress in Liver and Kidney of Chronic Aluminum Exposure Mice. Biological Trace Element Research, 2017, 176, 342-349.	1.9	31
43	Protective Effects of Dietary Supplements Containing Probiotics, Micronutrients, and Plant Extracts Against Lead Toxicity in Mice. Frontiers in Microbiology, 2018, 9, 2134.	1.5	31
44	Food-borne patulin toxicity is related to gut barrier disruption and can be prevented by docosahexaenoic acid and probiotic supplementation. Food and Function, 2019, 10, 1330-1339.	2.1	30
45	The characteristics of patulin detoxification by Lactobacillus plantarum 13M5. Food and Chemical Toxicology, 2020, 146, 111787.	1.8	30
46	Effects of Probiotic Supplementation on Dyslipidemia in Type 2 Diabetes Mellitus: A Meta-Analysis of Randomized Controlled Trials. Foods, 2020, 9, 1540.	1.9	30
47	Lactobacillus fermentum and its potential immunomodulatory properties. Journal of Functional Foods, 2019, 56, 21-32.	1.6	29
48	Meta-analysis of the efficacy of probiotic-supplemented therapy on the eradication of H. pylori and incidence of therapy-associated side effects. Microbial Pathogenesis, 2020, 147, 104403.	1.3	29
49	Efficacy of probiotics in multiple sclerosis: a systematic review of preclinical trials and meta-analysis of randomized controlled trials. Food and Function, 2021, 12, 2354-2377.	2.1	29
50	Characteristics of the urinary microbiome in kidney stone patients with hypertension. Journal of Translational Medicine, 2020, 18, 130.	1.8	28
51	Varied doses and chemical forms of selenium supplementation differentially affect mouse intestinal physiology. Food and Function, 2019, 10, 5398-5412.	2.1	27
52	Influence of oral administration of <i>Akkermansia muciniphila</i> on the tissue distribution and gut microbiota composition of acute and chronic cadmium exposure mice. FEMS Microbiology Letters, 2019, 366, .	0.7	27
53	Comparative genomics shows niche-specific variations of Lactobacillus plantarum strains isolated from human, Drosophila melanogaster, vegetable and dairy sources. Food Bioscience, 2020, 35, 100581.	2.0	27
54	<i>>Desulfovibrio diazotrophicus</i> sp. nov., a sulfateâ€reducing bacterium from the human gut capable of nitrogen fixation. Environmental Microbiology, 2021, 23, 3164-3181.	1.8	26

#	Article	IF	CITATIONS
55	Dose-dependent effects of lead induced gut injuries: An inÂvitro and inÂvivo study. Chemosphere, 2021, 266, 129130.	4.2	25
56	Potential Role of Probiotics in Ameliorating Psoriasis by Modulating Gut Microbiota in Imiquimod-Induced Psoriasis-Like Mice. Nutrients, 2021, 13, 2010.	1.7	25
57	Lactobacillus plantarum CCFM639 alleviates aluminium toxicity. Applied Microbiology and Biotechnology, 2016, 100, 1891-1900.	1.7	24
58	Latilactobacillus curvatus: A Candidate Probiotic with Excellent Fermentation Properties and Health Benefits. Foods, 2020, 9, 1366.	1.9	24
59	Meta-analysis of randomized controlled trials of the effects of probiotics on type 2 diabetes in adults. Clinical Nutrition, 2022, 41, 365-373.	2.3	24
60	Comparative metabolomic analysis reveals global cadmium stress response of <i>Lactobacillus plantarum</i> strains. Metallomics, 2018, 10, 1065-1077.	1.0	23
61	Identification of the key characteristics of <i>Bifidobacterium longum</i> strains for the alleviation of ulcerative colitis. Food and Function, 2021, 12, 3476-3492.	2.1	23
62	The effects of diet and gut microbiota on the regulation of intestinal mucin glycosylation. Carbohydrate Polymers, 2021, 258, 117651.	5.1	23
63	Establishing a novel colorectal cancer predictive model based on unique gut microbial single nucleotide variant markers. Gut Microbes, 2021, 13, 1-6.	4.3	23
64	The role of mucin and oligosaccharides via cross-feeding activities by Bifidobacterium: A review. International Journal of Biological Macromolecules, 2021, 167, 1329-1337.	3.6	22
65	Distinct Microbiomes of Gut and Saliva in Patients With Systemic Lupus Erythematous and Clinical Associations. Frontiers in Immunology, 2021, 12, 626217.	2.2	22
66	Human gut-derived B. longum subsp. longum strains protect against aging in a d-galactose-induced aging mouse model. Microbiome, 2021, 9, 180.	4.9	22
67	Pilot Safety Evaluation of a Novel Strain of Bacteroides ovatus. Frontiers in Genetics, 2018, 9, 539.	1.1	21
68	<i>Lactobacillus reuteri</i> A9 and <i>Lactobacillus mucosae</i> A13 isolated from Chinese superlongevity people modulate lipid metabolism in a hypercholesterolemia rat model. FEMS Microbiology Letters, 2019, 366, .	0.7	21
69	Potential of gut microbiome for detection of autism spectrum disorder. Microbial Pathogenesis, 2020, 149, 104568.	1.3	21
70	The roles of different <i>Bacteroides fragilis</i> strains in protecting against DSS-induced ulcerative colitis and related functional genes. Food and Function, 2021, 12, 8300-8313.	2.1	21
71	New insights in integrated response mechanism of Lactobacillus plantarum under excessive manganese stress. Food Research International, 2017, 102, 323-332.	2.9	20
72	Lactobacillus plantarum CCFM8610 Alleviates Irritable Bowel Syndrome and Prevents Gut Microbiota Dysbiosis: A Randomized, Double-Blind, Placebo-Controlled, Pilot Clinical Trial. Engineering, 2021, 7, 376-385.	3.2	20

#	Article	IF	CITATIONS
73	Lactobacillus plantarum-Mediated Regulation of Dietary Aluminum Induces Changes in the Human Gut Microbiota: an In Vitro Colonic Fermentation Study. Probiotics and Antimicrobial Proteins, 2021, 13, 398-412.	1.9	19
74	Protective effects of lactic acid bacteria-fermented soymilk against chronic cadmium toxicity in mice. RSC Advances, 2015, 5, 4648-4658.	1.7	18
75	Metabolomics analysis reveals heavy metal copper-induced cytotoxicity in HT-29 human colon cancer cells. RSC Advances, 2016, 6, 78445-78456.	1.7	17
76	The therapeutic protection of a living and dead Lactobacillus strain against aluminum-induced brain and liver injuries in C57BL/6 mice. PLoS ONE, 2017, 12, e0175398.	1,1	16
77	The synergistic effect of <i>Lactobacillus plantarum</i> CCFM242 and zinc on ulcerative colitis through modulating intestinal homeostasis. Food and Function, 2019, 10, 6147-6156.	2.1	16
78	The Protective Effect of Myristica fragrans Houtt. Extracts Against Obesity and Inflammation by Regulating Free Fatty Acids Metabolism in Nonalcoholic Fatty Liver Disease. Nutrients, 2020, 12, 2507.	1.7	16
79	Pediococcus acidilactici Strains Improve Constipation Symptoms and Regulate Intestinal Flora in Mice. Frontiers in Cellular and Infection Microbiology, 2021, 11, 655258.	1.8	16
80	Behavioral disorders caused by nonylphenol and strategies for protection. Chemosphere, 2021, 275, 129973.	4.2	16
81	Protective effects of <i>Bacteroides fragilis</i> against lipopolysaccharide-induced systemic inflammation and their potential functional genes. Food and Function, 2022, 13, 1015-1025.	2.1	16
82	Dietary Patterns and Gut Microbiota: The Crucial Actors in Inflammatory Bowel Disease. Advances in Nutrition, 2022, 13, 1628-1651.	2.9	16
83	Isolation of Low-Abundant Bacteroidales in the Human Intestine and the Analysis of Their Differential Utilization Based on Plant-Derived Polysaccharides. Frontiers in Microbiology, 2018, 9, 1319.	1.5	15
84	A comparison of the inhibitory activities of <i>Lactobacillus</i> and <i>Bifidobacterium</i> against <i>Penicillium expansum</i> and an analysis of potential antifungal metabolites. FEMS Microbiology Letters, 2020, 367, .	0.7	15
85	Strain-Specific Effects of Bifidobacterium longum on Hypercholesterolemic Rats and Potential Mechanisms. International Journal of Molecular Sciences, 2021, 22, 1305.	1.8	15
86	Physiological Characteristics of Lactobacillus casei Strains and Their Alleviation Effects against Inflammatory Bowel Disease. Journal of Microbiology and Biotechnology, 2021, 31, 92-103.	0.9	14
87	Selection, identification and application of DNA aptamers for the detection of Bifidobacterium breve. RSC Advances, 2017, 7, 11672-11679.	1.7	13
88	Effects of acute oral lead exposure on the levels of essential elements of mice: a metallomics and dose-dependent study. Journal of Trace Elements in Medicine and Biology, 2020, 62, 126624.	1.5	13
89	Evidence from comparative genomic analyses indicating that Lactobacillus-mediated irritable bowel syndrome alleviation is mediated by conjugated linoleic acid synthesis. Food and Function, 2021, 12, 1121-1134.	2.1	13
90	The diversity and composition of the human gut lactic acid bacteria and bifidobacterial microbiota vary depending on age. Applied Microbiology and Biotechnology, 2021, 105, 8427-8440.	1.7	13

#	Article	IF	CITATIONS
91	Effects of Bacteroides-Based Microecologics against Antibiotic-Associated Diarrhea in Mice. Microorganisms, 2021, 9, 2492.	1.6	13
92	<i>Ganoderma applanatum</i> polysaccharides and ethanol extracts promote the recovery of colitis through intestinal barrier protection and gut microbiota modulations. Food and Function, 2022, 13, 688-701.	2.1	13
93	System-wide analysis of manganese starvation-induced metabolism in key elements of Lactobacillus plantarum. RSC Advances, 2017, 7, 12959-12968.	1.7	12
94	The pelvis urinary microbiome in patients with kidney stones and clinical associations. BMC Microbiology, 2020, 20, 336.	1.3	12
95	Supernatants of Bifidobacterium longum and Lactobacillus plantarum Strains Exhibited Antioxidative Effects on A7R5 Cells. Microorganisms, 2021, 9, 452.	1.6	12
96	Metabolomic analysis reveals the mechanism of aluminum cytotoxicity in HT-29 cells. PeerJ, 2019, 7, e7524.	0.9	12
97	Probiotic consumption influences universal adaptive mutations in indigenous human and mouse gut microbiota. Communications Biology, 2021, 4, 1198.	2.0	12
98	In vitro and in vivo evaluation of Lactobacillus strains and comparative genomic analysis of Lactobacillus plantarum CGMCC12436 reveal candidates of colonise-related genes. Food Research International, 2019, 119, 813-821.	2.9	11
99	Effects of Bacillus coagulans as an adjunct starter culture on yogurt quality and storage. Journal of Dairy Science, 2021, 104, 7466-7479.	1.4	11
100	Protective Effects of Lactobacillus plantarum CCFM8610 against Acute Toxicity Caused by Different Food-Derived Forms of Cadmium in Mice. International Journal of Molecular Sciences, 2021, 22, 11045.	1.8	11
101	Dose-dependent effects of chronic lead toxicity in vivo: Focusing on trace elements and gut microbiota. Chemosphere, 2022, 301, 134670.	4.2	11
102	A new method for evaluating the bioaccessibility of different foodborne forms of cadmium. Toxicology Letters, 2020, 319, 31-39.	0.4	10
103	Relief of Cadmium-Induced Intestinal Motility Disorder in Mice by Lactobacillus plantarum CCFM8610. Frontiers in Immunology, 2020, 11, 619574.	2.2	10
104	Niche-Specific Adaptive Evolution of Lactobacillus plantarum Strains Isolated From Human Feces and Paocai. Frontiers in Cellular and Infection Microbiology, 2020, 10, 615876.	1.8	10
105	Gene–Phenotype Associations Involving Human-Residential Bifidobacteria (HRB) Reveal Significant Species- and Strain-Specificity in Carbohydrate Catabolism. Microorganisms, 2021, 9, 883.	1.6	10
106	Integrated Phenotypic–Genotypic Analysis of LatilactobacillusÂsakei from Different Niches. Foods, 2021, 10, 1717.	1.9	10
107	<i>Bifidobacterium longum</i> CCFM752 prevented hypertension and aortic lesion, improved antioxidative ability, and regulated the gut microbiome in spontaneously hypertensive rats. Food and Function, 2022, 13, 6373-6386.	2.1	10
108	Preliminary safety assessment of a new Bacteroides fragilis isolate. Food and Chemical Toxicology, 2020, 135, 110934.	1.8	9

#	Article	IF	CITATIONS
109	A new Illumina MiSeq highâ€throughput sequencingâ€based method for evaluating the composition of the Bacteroides community in the intestine using the rpsD gene sequence. Microbial Biotechnology, 2021, 14, 577-586.	2.0	9
110	Quantitative Detection of Bifidobacterium longum Strains in Feces Using Strain-Specific Primers. Microorganisms, 2021, 9, 1159.	1.6	9
111	A. muciniphila Supplementation in Mice during Pregnancy and Lactation Affects the Maternal Intestinal Microenvironment. Nutrients, 2022, 14, 390.	1.7	9
112	Protective effects of a cocktail of lactic acid bacteria on microcystin-LR-induced hepatotoxicity and oxidative damage in BALB/c mice. RSC Advances, 2017, 7, 20480-20487.	1.7	7
113	Comparative Genomic Analysis Determines the Functional Genes Related to Bile Salt Resistance in Lactobacillus salivarius. Microorganisms, 2021, 9, 2038.	1.6	7
114	Synergistic Protective Effects of Different Dietary Supplements Against Type 2 Diabetes via Regulating Gut Microbiota. Journal of Medicinal Food, 2021, 24, 319-330.	0.8	6
115	Phocaeicola faecalis sp. nov., a strictly anaerobic bacterial strain adapted to the human gut ecosystem. Antonie Van Leeuwenhoek, 2021, 114, 1225-1235.	0.7	6
116	Colonized Niche, Evolution and Function Signatures of Bifidobacterium pseudolongum within Bifidobacterial Genus. Foods, 2021, 10, 2284.	1.9	6
117	Evaluation of Antioxidative Effects of Lactobacillus plantarum with Fuzzy Synthetic Models. Journal of Microbiology and Biotechnology, 2018, 28, 1052-1060.	0.9	6
118	An optimized culture medium to isolate <i>Lactobacillus fermentum</i> strains from the human intestinal tract. Food and Function, 2021, 12, 6740-6754.	2.1	4
119	Effect of an infant formula containing sn-2 palmitate on fecal microbiota and metabolome profiles of healthy term infants: a randomized, double-blind, parallel, controlled study. Food and Function, 2022, 13, 2003-2018.	2.1	4
120	Characteristics of an In Vitro Mesenteric Lymph Node Cell Suspension Model and Its Possible Association with In Vivo Functional Evaluation. International Journal of Molecular Sciences, 2022, 23, 1003.	1.8	3
121	MLST analysis of genetic diversity of Bacillus coagulans strains to evaluate effects on constipation model. Food Science and Human Wellness, 2022, 11, 815-827.	2.2	3
122	Novel Thermostable Heparinase Based on the Genome of Bacteroides Isolated from Human Gut Microbiota. Foods, 2022, 11, 1462.	1.9	1
123	A screening model for probiotics against specific metabolic diseases based on caco-2 monolayer membrane. Engineering, 2022, , .	3.2	0