
Eckhard Boles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5130514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptomic response of <i>Saccharomyces cerevisiae</i> to octanoic acid production. FEMS Yeast Research, 2021, 21, .	1.1	4
2	Glucose-induced internalization of the <i>S. cerevisiae</i> galactose permease Gal2 is dependent on phosphorylation and ubiquitination of its aminoterminal cytoplasmic tail. FEMS Yeast Research, 2021, 21, .	1.1	7
3	High-Throughput Screening of an Octanoic Acid Producer Strain Library Enables Detection of New Targets for Increasing Titers in <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2021, 10, 1077-1086.	1.9	7
4	Production of octanoic acid in <i>Saccharomyces cerevisiae</i> : Investigation of new precursor supply engineering strategies and intrinsic limitations. Biotechnology and Bioengineering, 2021, 118, 3046-3057.	1.7	6
5	Identification of a glucose-insensitive variant of Gal2 from Saccharomyces cerevisiae exhibiting a high pentose transport capacity. Scientific Reports, 2021, 11, 24404.	1.6	6
6	De novo biosynthesis of 8-hydroxyoctanoic acid via a medium-chain length specific fatty acid synthase and cytochrome P450 in Saccharomyces cerevisiae. Metabolic Engineering Communications, 2020, 10, e00111.	1.9	8
7	Artificial ER-Derived Vesicles as Synthetic Organelles forin VivoCompartmentalization of Biochemical Pathways. ACS Synthetic Biology, 2020, 9, 2909-2916.	1.9	20
8	Fusing \hat{I}_{\pm} and \hat{I}^2 subunits of the fungal fatty acid synthase leads to improved production of fatty acids. Scientific Reports, 2020, 10, 9780.	1.6	7
9	Improving 3-methylphenol (m-cresol) production in yeast via in vivo glycosylation or methylation. FEMS Yeast Research, 2020, 20, .	1.1	2
10	Substrate promiscuity of polyketide synthase enables production of tsetse fly attractants 3-ethylphenol and 3-propylphenol by engineering precursor supply in yeast. Scientific Reports, 2020, 10, 9962.	1.6	4
11	Improving isobutanol production with the yeast Saccharomyces cerevisiae by successively blocking competing metabolic pathways as well as ethanol and glycerol formation. Biotechnology for Biofuels, 2019, 12, 173.	6.2	68
12	Identification and characterisation of two high-affinity glucose transporters from the spoilage yeast <i>Brettanomyces bruxellensis</i> . FEMS Microbiology Letters, 2019, 366, .	0.7	9
13	De novo production of aromatic m-cresol in Saccharomyces cerevisiae mediated by heterologous polyketide synthases combined with a 6-methylsalicylic acid decarboxylase. Metabolic Engineering Communications, 2019, 9, e00093.	1.9	14
14	An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae. FEMS Yeast Research, 2018, 18, .	1.1	39
15	Engineering of hydroxymandelate synthases and the aromatic amino acid pathway enables de novo biosynthesis of mandelic and 4-hydroxymandelic acid with Saccharomyces cerevisiae. Metabolic Engineering, 2018, 45, 246-254.	3.6	41
16	A Growth-Based Screening System for Hexose Transporters in Yeast. Methods in Molecular Biology, 2018, 1713, 123-135.	0.4	17
17	Bacterial bifunctional chorismate mutase-prephenate dehydratase PheA increases flux into the yeast phenylalanine pathway and improves mandelic acid production. Metabolic Engineering Communications, 2018, 7, e00079.	1.9	10
18	A Yeast-Based Biosensor for Screening of Short- and Medium-Chain Fatty Acid Production. ACS Synthetic Biology, 2018, 7, 2640-2646.	1.9	33

ECKHARD BOLES

#	Article	IF	CITATIONS
19	A superfolder variant of pH-sensitive pHluorin for in vivo pH measurements in the endoplasmic reticulum. Scientific Reports, 2018, 8, 11985.	1.6	37
20	An engineered fatty acid synthase combined with a carboxylic acid reductase enables de novo production of 1-octanol in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2018, 11, 150.	6.2	29
21	Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nature Communications, 2017, 8, 14650.	5.8	117
22	Requirement of a Functional Flavin Mononucleotide Prenyltransferase for the Activity of a Bacterial Decarboxylase in a Heterologous Muconic Acid Pathway in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2017, 83, .	1.4	23
23	Secretion of 2,3-dihydroxyisovalerate as a limiting factor for isobutanol production in Saccharomyces cerevisiae. FEMS Yeast Research, 2017, 17, .	1.1	18
24	De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2017, 101, 4883-4893.	1.7	45
25	Establishing a yeast-based screening system for discovery of human GLUT5 inhibitors and activators. Scientific Reports, 2017, 7, 6197.	1.6	22
26	Optimisation of trans-cinnamic acid and hydrocinnamyl alcohol production with recombinant Saccharomyces cerevisiae and identification of cinnamyl methyl ketone as a by-product. FEMS Yeast Research, 2017, 17, .	1.1	14
27	An artificial transport metabolon facilitates improved substrate utilization in yeast. Nature Chemical Biology, 2017, 13, 1158-1163.	3.9	65
28	Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose. FEMS Yeast Research, 2017, 17, .	1.1	45
29	Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of Saccharomyces cerevisiae. Microbial Cell Factories, 2016, 15, 127.	1.9	53
30	Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression. Biotechnology for Biofuels, 2016, 9, 257.	6.2	43
31	Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Scientific Reports, 2016, 6, 23502.	1.6	58
32	Simplified CRISPR-Cas genome editing for Saccharomyces cerevisiae. Journal of Microbiological Methods, 2016, 127, 203-205.	0.7	129
33	n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnology for Biofuels, 2016, 9, 44.	6.2	63
34	Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Current Opinion in Biotechnology, 2015, 33, 1-7.	3.3	80
35	Calculation of Raw Material Prices and Conversion Costs for Biofuels. Lecture Notes in Energy, 2014, , 93-115.	0.2	5
36	The bacterial Entner–Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron–sulfur cluster enzyme 6-phosphogluconate dehydratase. Journal of Biotechnology, 2014, 171, 45-55.	1.9	41

Eckhard Boles

#	Article	IF	CITATIONS
37	Engineering of yeast hexose transporters to transport <scp>d</scp> -xylose without inhibition by <scp>d</scp> -glucose. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5159-5164.	3.3	253
38	Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels, 2013, 6, 89.	6.2	257
39	Modelling Production Cost Scenarios for Biofuels and Fossil Fuels in Europe. SSRN Electronic Journal, 2013, , .	0.4	3
40	Biosynthesis of <i>cis</i> , <i>cis</i> -Muconic Acid and Its Aromatic Precursors, Catechol and Protocatechuic Acid, from Renewable Feedstocks by Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2012, 78, 8421-8430.	1.4	153
41	Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnology for Biofuels, 2012, 5, 65.	6.2	128
42	Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. Biotechnology for Biofuels, 2011, 4, 38.	6.2	79
43	Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels. Applied Microbiology and Biotechnology, 2010, 87, 1303-1315.	1.7	296
44	Considerable Increase in Resveratrol Production by Recombinant Industrial Yeast Strains with Use of Rich Medium. Applied and Environmental Microbiology, 2010, 76, 3361-3363.	1.4	83
45	Codon-Optimized Bacterial Genes Improve <scp>l</scp> -Arabinose Fermentation in Recombinant <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2008, 74, 2043-2050.	1.4	101
46	Role of transporter-like sensors in glucose and amino acid signalling in yeast. Topics in Current Genetics, 2004, , 155-178.	0.7	16
47	Co-expression of a mammalian accessory trafficking protein enables functional expression of the rat MCT1 monocarboxylate transporter in. FEMS Yeast Research, 2004, 4, 795-801.	1.1	21
48	A Modified Saccharomyces cerevisiae Strain That Consumes I -Arabinose and Produces Ethanol. Applied and Environmental Microbiology, 2003, 69, 4144-4150.	1.4	229
49	Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology (United Kingdom), 2002, 148, 2783-2788.	0.7	263
50	Characterisation of glucose transport inSaccharomyces cerevisiaewith plasma membrane vesicles (countertransport) and intact cells (initial uptake) with single Hxt1, Hxt2, Hxt3, Hxt4, Hxt6, Hxt7 or Gal2 transporters. FEMS Yeast Research, 2002, 2, 539-550.	1.1	107
51	Glucose-dependent and -independent signalling functions of the yeast glucose sensor Snf3. FEBS Letters, 2001, 505, 389-392.	1.3	31
52	The role of hexose transport and phosphorylation in cAMP signalling in the yeastSaccharomyces cerevisiae. FEMS Yeast Research, 2001, 1, 33-45.	1.1	49
53	The HTR1 Gene Is a Dominant Negative Mutant Allele of MTH1 and Blocks Snf3- and Rgt2-Dependent Glucose Signaling in Yeast. Journal of Bacteriology, 2000, 182, 540-542.	1.0	51
54	Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Molecular Microbiology, 1999, 31, 871-883.	1.2	118

ECKHARD BOLES

11

#	Article	IF	CITATIONS
55	Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses inSaccharomyces cerevisiae. FEBS Letters, 1999, 464, 123-128.	1.3	552
56	Amino Acid Signaling in <i>Saccharomyces cerevisiae</i> : a Permease-Like Sensor of External Amino Acids and F-Box Protein Grr1p Are Required for Transcriptional Induction of the <i>AGP1</i> Gene, Which Encodes a Broad-Specificity Amino Acid Permease. Molecular and Cellular Biology, 1999, 19, 989-1001.	1.1	256
57	The molecular genetics of hexose transport in yeasts. FEMS Microbiology Reviews, 1997, 21, 85-111.	3.9	364
58	Kinetic Characterization of Individual Hexose Transporters of Saccharomyces Cerevisiae and their Relation to the Triggering Mechanisms of Glucose Repression. FEBS Journal, 1997, 245, 324-333.	0.2	338
59	A multiâ€ l ayered sensory system controls yeast glycolytic gene expression. Molecular Microbiology, 1996, 19, 641-642.	1.2	26
60	Unusual regulation of the uptake system for branched-chain amino acids in Corynebacterium glutamicum. Archives of Microbiology, 1993, 159, 147-152.	1.0	18
61	Saccharomyces cerevisiae phosphoglucose isomerase and fructose bisphosphate aldolase can be replaced functionally by the corresponding enzymes of Escherichia coli and Drosophila melanogaster. Current Genetics, 1993, 23, 187-191.	0.8	40
62	Different signals control the activation of glycolysis in the yeastSaccharomyces cerevisiae. Yeast, 1993, 9, 761-770.	0.8	81
63	The role of the NAD-dependent glutamate dehydrogenase in restoring growth on glucose of a Saccharomyces cerevisiae phosphoglucose isomerase mutant. FEBS Journal, 1993, 217, 469-477.	0.2	96
			_

64 Yeast as a Model System for Studying Glucose Transport. , 0, , 19-36.