Craig A Schenck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5129821/publications.pdf

Version: 2024-02-01

		1040056	1125743
13	522	9	13
papers	citations	h-index	g-index
10	19	10	720
19	19	19	720
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochemistry, 2018, 149, 82-102.	2.9	137
2	Robust predictions of specialized metabolism genes through machine learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2344-2353.	7.1	79
3	Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis. ELife, 2019, 8, .	6.0	74
4	Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes. Nature Chemical Biology, 2015, 11, 52-57.	8.0	50
5	Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity. ELife, 2020, 9, .	6.0	47
6	Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants. Nature Chemical Biology, 2017, 13, 1029-1035.	8.0	42
7	Location, location! cellular relocalization primes specialized metabolic diversification. FEBS Journal, 2020, 287, 1359-1368.	4.7	25
8	A proteomics approach identifies novel proteins involved in gravitropic signal transduction. American Journal of Botany, 2013, 100, 194-202.	1.7	22
9	Conserved Molecular Mechanism of TyrA Dehydrogenase Substrate Specificity Underlying Alternative Tyrosine Biosynthetic Pathways in Plants and Microbes. Frontiers in Molecular Biosciences, 2017, 4, 73.	3.5	13
10	Within- and cross-species predictions of plant specialized metabolism genes using transfer learning. In Silico Plants, 2020, 2, diaa005.	1.9	10
11	Role of cytosolic, tyrosineâ€insensitive prephenate dehydrogenase in <i>MedicagoÂtruncatula</i> . Plant Direct, 2020, 4, e00218.	1.9	7
12	Using interdisciplinary, phylogeny-guided approaches to understand the evolution of plant metabolism. Plant Molecular Biology, 2021, , 1.	3.9	7
13	Natural variation meets synthetic biology: Promiscuous trichome-expressed acyltransferases from <i>Nicotiana</i> . Plant Physiology, 2022, 190, 146-164.	4.8	3