
Surya Subianto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5129647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improving the Tensile Properties of Wet Spun Silk Fibers Using Rapid Bayesian Algorithm. ACS Biomaterials Science and Engineering, 2020, 6, 3197-3207.	5.2	12
2	Optimizing a High-Entropy System: Software-Assisted Development of Highly Hydrophobic Surfaces using an Amphiphilic Polymer. ACS Omega, 2019, 4, 15912-15922.	3.5	9
3	The effect of metal ligands on the adsorption of metal coordination complexes on polystyrene nano-beads. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 541-547.	4.7	Ο
4	Efficient Bayesian Function Optimization of Evolving Material Manufacturing Processes. ACS Omega, 2019, 4, 20571-20578.	3.5	0
5	Effect of polymerized ionic liquid based gel inhibitor on electrochemical performance of self-assembled nanophase coating. Progress in Organic Coatings, 2018, 120, 143-152.	3.9	2
6	Sulfonated Thiophene Derivative Stabilized Aqueous Poly(3-hexylthiophene):Phenyl-C ₆₁ -butyric Acid Methyl Ester Nanoparticle Dispersion for Organic Solar Cell Applications. ACS Applied Materials & Interfaces, 2018, 10, 44116-44125.	8.0	18
7	Water-Reprocessable, Reformable, and Ecofriendly Sustainable Material Based on Disulfide-Cross-Linked Polyethyleneimine. ACS Omega, 2017, 2, 3036-3042.	3.5	7
8	Novel rhodanine based molecular acceptor for organic solar cells. EPJ Photovoltaics, 2017, 8, 80402.	1.6	2
9	Interfacial Engineering of fullerenol using thiophene for solution processable solar cell: Effect of thiophenated fullerene on the miscibility with poly(3-hexylthiophene). Procedia Engineering, 2017, 215, 219-225.	1.2	0
10	Novel Thiol-Ene Hybrid Coating for Metal Protection. Coatings, 2016, 6, 17.	2.6	12
11	Polymeric Ionic Liquid Nanoparticle Emulsions as a Corrosion Inhibitor in Anticorrosion Coatings. ACS Omega, 2016, 1, 29-40.	3.5	31
12	Bulk heterojunction organic photovoltaics from water-processable nanomaterials and their facile fabrication approaches. Advances in Colloid and Interface Science, 2016, 235, 56-69.	14.7	21
13	Induced insolubility of electrospun poly(N-vinylcaprolactam) fibres through hydrogen bonding with Tannic acid. Polymer, 2016, 87, 194-201.	3.8	22
14	Fundamentals of Electrospinning. , 2015, , 1-28.		2
15	Negligible degradation upon in situ voltage cycling of a PEMFC using an electrospun niobium-doped tin oxide supported Pt cathode. Physical Chemistry Chemical Physics, 2015, 17, 16970-16976.	2.8	37
16	Facile Fabrication of Polymerizable Ionic Liquid Based-Gel Beads via Thiol–ene Chemistry. ACS Applied Materials & Interfaces, 2015, 7, 17298-17306.	8.0	28
17	Electrospun Nanofibers for Low-Temperature Proton Exchange Membrane Fuel Cells. , 2015, , 29-60.		2
18	Composite Electrolyte Membranes from Partially Fluorinated Polymer and Hyperbranched, Sulfonated Polysulfone. Nanomaterials, 2014, 4, 1-18.	4.1	27

SURYA SUBIANTO

#	Article	IF	CITATIONS
19	Recent advances in polybenzimidazole/phosphoric acid membranes for highâ€ŧemperature fuel cells. Polymer International, 2014, 63, 1134-1144.	3.1	107
20	Reactive coaxial electrospinning of ZrP/ZrO2 nanofibres. Journal of Materials Chemistry A, 2014, 2, 13359-13365.	10.3	16
21	Promising Aquivion Composite Membranes based on Fluoroalkyl Zirconium Phosphate for Fuel Cell Applications. ChemSusChem, 2014, 7, 2176-2184.	6.8	20
22	Zirconium phosphate reinforced short side chain perflurosulfonic acid membranes for medium temperature proton exchange membrane fuel cell application. Journal of Power Sources, 2014, 262, 407-413.	7.8	20
23	Dopant-Driven Nanostructured Loose-Tube SnO ₂ Architectures: Alternative Electrocatalyst Supports for Proton Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2013, 117, 18298-18307.	3.1	56
24	Physical and chemical modification routes leading to improved mechanical properties of perfluorosulfonic acid membranes for PEM fuel cells. Journal of Power Sources, 2013, 233, 216-230.	7.8	148
25	Effect of sideâ€chain length on the electrospinning of perfluorosulfonic acid ionomers. Journal of Polymer Science Part A, 2013, 51, 118-128.	2.3	30
26	Single step elaboration of size-tuned Pt loaded titania nanofibres. Chemical Communications, 2011, 47, 6834.	4.1	34
27	Electrospinning: designed architectures for energy conversion and storage devices. Energy and Environmental Science, 2011, 4, 4761.	30.8	654
28	On Electrospinning of PFSA: A Comparison between Long and Short-Side Chain Ionomers. ECS Transactions, 2011, 41, 1517-1520.	0.5	11
29	Composite Polymer Electrolyte Containing Ionic Liquid and Functionalized Polyhedral Oligomeric Silsesquioxanes for Anhydrous PEM Applications. ACS Applied Materials & Interfaces, 2009, 1, 1173-1182.	8.0	122
30	Interfacial Interactions in Aprotic Ionic Liquid Based Protonic Membrane and Its Correlation with High Temperature Conductivity and Thermal Properties. Langmuir, 2009, 25, 9240-9251.	3.5	72
31	Palladiumâ€catalyzed phosphonation of SEBS block copolymer. Journal of Polymer Science Part A, 2008, 46, 5431-5441.	2.3	20
32	Broadband Photon-harvesting Biomolecules for Photovoltaics. , 2006, , 35-65.		3
33	Electrochemical synthesis of melanin free-standing films. Polymer, 2005, 46, 11505-11509.	3.8	36
34	Electropolymerization of Pyrrole on Cotton Fabrics. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54, 141-150.	3.4	10
35	Templated electropolymerization of pyrrole in a capillary. Journal of Polymer Science Part A, 2003, 41, 1867-1869.	2.3	8