João R Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5129434/publications.pdf Version: 2024-02-01

IOÃFO R COMES

#	Article	IF	CITATIONS
1	Bridging the Transient Intraluminal Stroke Preclinical Model to Clinical Practice: From Improved Surgical Procedures to a Workflow of Functional Tests. Frontiers in Neurology, 2022, 13, 846735.	2.4	3
2	Neuronal megalin mediates synaptic plasticity—a novel mechanism underlying intellectual disabilities in megalin gene pathologies. Brain Communications, 2020, 2, fcaa135.	3.3	10
3	Anti-TTR Nanobodies Allow the Identification of TTR Neuritogenic Epitope Associated with TTR-Megalin Neurotrophic Activities. ACS Chemical Neuroscience, 2019, 10, 704-715.	3.5	5
4	Delivery of an antiâ€ŧransthyretin Nanobody to the brain through intranasal administration reveals transthyretin expression and secretion by motor neurons. Journal of Neurochemistry, 2018, 145, 393-408.	3.9	22
5	BDNF-Induced Intracellular Signaling. Neuromethods, 2017, , 161-183.	0.3	0
6	Transthyretin provides trophic support via megalin by promoting neurite outgrowth and neuroprotection in cerebral ischemia. Cell Death and Differentiation, 2016, 23, 1749-1764.	11.2	45
7	Transthyretin participates in beta-amyloid transport from the brain to the liver- involvement of the low-density lipoprotein receptor-related protein 1?. Scientific Reports, 2016, 6, 20164.	3.3	71
8	Gephyrin Cleavage in In Vitro Brain Ischemia Decreases GABAA Receptor Clustering and Contributes to Neuronal Death. Molecular Neurobiology, 2016, 53, 3513-3527.	4.0	41
9	Transthyretin Induces Insulin-like Growth Factor I Nuclear Translocation Regulating Its Levels in the Hippocampus. Molecular Neurobiology, 2015, 51, 1468-1479.	4.0	25
10	Spatiotemporal resolution of BDNF neuroprotection against glutamate excitotoxicity in cultured hippocampal neurons. Neuroscience, 2013, 237, 66-86.	2.3	30
11	Excitotoxicity Downregulates TrkB.FL Signaling and Upregulates the Neuroprotective Truncated TrkB Receptors in Cultured Hippocampal and Striatal Neurons. Journal of Neuroscience, 2012, 32, 4610-4622.	3.6	84
12	Cleavage of the vesicular glutamate transporters under excitotoxic conditions. Neurobiology of Disease, 2011, 44, 292-303.	4.4	31
13	Cleavage of the Vesicular GABA Transporter under Excitotoxic Conditions Is Followed by Accumulation of the Truncated Transporter in Nonsynaptic Sites. Journal of Neuroscience, 2011, 31, 4622-4635.	3.6	42
14	BDNF-Induced Changes in the Expression of the Translation Machinery in Hippocampal Neurons: Protein Levels and Dendritic mRNA. Journal of Proteome Research, 2009, 8, 4536-4552.	3.7	54
15	Neuronâ€microglia crosstalk upâ€regulates neuronal FGFâ€2 expression which mediates neuroprotection against excitotoxicity via JNK1/2. Journal of Neurochemistry, 2008, 107, 73-85.	3.9	40
16	Neurotrophin Signaling and Cell Survival. , 2007, , 137-172.		11
17	Neuroprotection by BDNF against glutamate-induced apoptotic cell death is mediated by ERK and PI3-kinase pathways. Cell Death and Differentiation, 2005, 12, 1329-1343.	11.2	501