List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5129150/publications.pdf Version: 2024-02-01

FELLY ODELITZIC

#	Article	IF	CITATIONS
1	A systematic review on shared mobility in China. International Journal of Sustainable Transportation, 2022, 16, 374-389.	2.1	33
2	Demand-side solutions to climate change mitigation consistent with high levels of well-being. Nature Climate Change, 2022, 12, 36-46.	8.1	133
3	Bangkok's locked-in traffic jam: Price congestion or regulate parking?. Case Studies on Transport Policy, 2022, 10, 365-378.	1.1	4
4	Aligning artificial intelligence with climate change mitigation. Nature Climate Change, 2022, 12, 518-527.	8.1	69
5	Fuel crisis: slash demand in three sectors to protect economies and climate. Nature, 2022, 606, 460-462.	13.7	21
6	Machine learning for geographically differentiated climate change mitigation in urban areas. Sustainable Cities and Society, 2021, 64, 102526.	5.1	65
7	Reviewing the scope and thematic focus of 100 000 publications on energy consumption, services and social aspects of climate change: a big data approach to demand-side mitigation [*] . Environmental Research Letters, 2021, 16, 033001.	2.2	34
8	Considering sustainability thresholds for BECCS in IPCC and biodiversity assessments. GCB Bioenergy, 2021, 13, 510-515.	2.5	60
9	COVID-19-induced low power demand and market forces starkly reduce CO2 emissions. Nature Climate Change, 2021, 11, 193-196.	8.1	93
10	COVID-19 and pathways to low-carbon air transport until 2050. Environmental Research Letters, 2021, 16, 034063.	2.2	45
11	Climate action for health and wellbeing in cities: a protocol for the systematic development of a database of peer-reviewed studies using machine learning methods. Wellcome Open Research, 2021, 6, 50.	0.9	1
12	Systematic map of the literature on carbon lock-in induced by long-lived capital. Environmental Research Letters, 2021, 16, 053004.	2.2	32
13	COVID-19 recovery and the global urban poor. Npj Urban Sustainability, 2021, 1, .	3.7	13
14	Status consciousness in energy consumption: a systematic review. Environmental Research Letters, 2021, 16, 053010.	2.2	6
15	Electricity end-use and construction activity are key leverage points for co-controlling greenhouse gases and local pollution in China. Climatic Change, 2021, 167, 1.	1.7	2
16	From smart city to digital urban commons: Institutional considerations for governing shared mobility data. Environmental Research: Infrastructure and Sustainability, 2021, 1, 025004.	0.9	5
17	A multi-country meta-analysis on the role of behavioural change in reducing energy consumption and CO2 emissions in residential buildings. Nature Energy, 2021, 6, 925-932.	19.8	66
18	Leverage points for accelerating adoption of shared electric cars: Perceived benefits and environmental impact of NEVs. Energy Policy, 2021, 155, 112349.	4.2	21

#	Article	IF	CITATIONS
19	Combining economic recovery with climate change mitigation: A global evaluation of financial instruments. Economic Analysis and Policy, 2021, 72, 438-453.	3.2	11
20	The role of high-socioeconomic-status people in locking in or rapidly reducing energy-driven greenhouse gas emissions. Nature Energy, 2021, 6, 1011-1016.	19.8	109
21	We need biosphere stewardship that protects carbon sinks and builds resilience. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	41
22	Lifestyle, psychological, socioeconomic and environmental factors and their impact on hypertension during the coronavirus disease 2019 pandemic. Journal of Hypertension, 2021, 39, 1077-1089.	0.3	44
23	Coal transitions—part 1: a systematic map and review of case study learnings from regional, national, and local coal phase-out experiences. Environmental Research Letters, 2021, 16, 113003.	2.2	40
24	Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment. Nature Energy, 2021, 6, 1035-1044.	19.8	81
25	Environmental and economic impacts of trade barriers: The example of China–US trade friction. Resources and Energy Economics, 2020, 59, 101144.	1.1	44
26	A comparison of the health and environmental impacts of increasing urban density against increasing propensity to walk and cycle in Nashville, USA. Cities and Health, 2020, 4, 55-65.	1.6	4
27	Climate change mitigation in cities: a systematic scoping of case studies. Environmental Research Letters, 2020, 15, 093008.	2.2	42
28	Research for city practice. Cities and Health, 2020, 4, 2-12.	1.6	0
29	Keeping up with the Patels: Conspicuous consumption drives the adoption of cars and appliances in India. Energy Research and Social Science, 2020, 70, 101742.	3.0	21
30	Engage, don't preach: Active learning triggers climate action. Energy Research and Social Science, 2020, 70, 101779.	3.0	21
31	Fair street space allocation: ethical principles and empirical insights. Transport Reviews, 2020, 40, 711-733.	4.7	48
32	Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nature Climate Change, 2020, 10, 647-653.	8.1	1,408
33	A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part I: bibliometric and conceptual mapping. Environmental Research Letters, 2020, 15, 063002.	2.2	93
34	Adjust urban and rural road pricing for fair mobility. Nature Climate Change, 2020, 10, 591-594.	8.1	37
35	Discourses of climate delay. Global Sustainability, 2020, 3, .	1.6	201
36	A systematic review of the evidence on decoupling of GDP, resource use and GHG emissions, part II: synthesizing the insights. Environmental Research Letters, 2020, 15, 065003.	2.2	357

#	Article	IF	CITATIONS
37	Limits to Liberalism: Considerations for the Anthropocene. Ecological Economics, 2020, 177, 106763.	2.9	11
38	Unique Opportunities of Island States to Transition to a Low-Carbon Mobility System. Sustainability, 2020, 12, 1435.	1.6	19
39	Sweet spots are in the food system: Structural adjustments to co-control regional pollutants and national GHG emissions in China. Ecological Economics, 2020, 171, 106590.	2.9	3
40	Urbanization, processed foods, and eating out in India. Global Food Security, 2020, 25, 100361.	4.0	31
41	Quantifying the potential for climate change mitigation of consumption options. Environmental Research Letters, 2020, 15, 093001.	2.2	260
42	Determinants of low-carbon transport mode adoption: systematic review of reviews. Environmental Research Letters, 2020, 15, 103002.	2.2	68
43	Systematizing and upscaling urban climate change mitigation. Environmental Research Letters, 2020, 15, 100202.	2.2	8
44	Saving resources and the climate? A systematic review of the circular economy and its mitigation potential. Environmental Research Letters, 2020, 15, 123001.	2.2	51
45	Learning from urban form to predict building heights. PLoS ONE, 2020, 15, e0242010.	1.1	34
46	The concerns of the young protesters are justified: A statement by <i>Scientists for Future</i> concerning the protests for more climate protection. Gaia, 2019, 28, 79-87.	0.3	56
47	The Mitigation Trinity: Coordinating Policies to Escalate Climate Mitigation. One Earth, 2019, 1, 76-85.	3.6	11
48	A global dataset of CO2 emissions and ancillary data related to emissions for 343 cities. Scientific Data, 2019, 6, 180280.	2.4	65
49	Direct Air Capture of CO2: A Key Technology for Ambitious Climate Change Mitigation. Joule, 2019, 3, 2053-2057.	11.7	136
50	Leveraging digitalization for sustainability in urban transport. Global Sustainability, 2019, 2, .	1.6	32
51	Upscaling urban data science for global climate solutions. Global Sustainability, 2019, 2, .	1.6	73
52	The role of electric vehicles in near-term mitigation pathways and achieving the UK's carbon budget. Applied Energy, 2019, 251, 113111.	5.1	98
53	Star-shaped cities alleviate trade-off between climate change mitigation and adaptation. Environmental Research Letters, 2019, 14, 085011.	2.2	21
54	On-demand motorcycle taxis improve mobility, not sustainability. Case Studies on Transport Policy, 2019, 7, 218-229.	1.1	55

#	Article	IF	CITATIONS
55	Learning about urban climate solutions from case studies. Nature Climate Change, 2019, 9, 279-287.	8.1	105
56	Spatially contextualized analysis of energy use for commuting in India. Environmental Research Letters, 2019, 14, 045007.	2.2	13
57	The mutual dependence of negative emission technologies and energy systems. Energy and Environmental Science, 2019, 12, 1805-1817.	15.6	135
58	Assessing human and environmental pressures of global land-use change 2000–2010. Global Sustainability, 2019, 2, .	1.6	60
59	Towards demand-side solutions for mitigating climate change. Nature Climate Change, 2018, 8, 260-263.	8.1	496
60	The literature landscape on 1.5 °C climate change and cities. Current Opinion in Environmental Sustainability, 2018, 30, 26-34.	3.1	30
61	Negative emissions—Part 3: Innovation and upscaling. Environmental Research Letters, 2018, 13, 063003.	2.2	224
62	Negative emissions—Part 1: Research landscape and synthesis. Environmental Research Letters, 2018, 13, 063001.	2.2	498
63	Negative emissions—Part 2: Costs, potentials and side effects. Environmental Research Letters, 2018, 13, 063002.	2.2	823
64	Can land taxes foster sustainable development? An assessment of fiscal, distributional and implementation issues. Land Use Policy, 2018, 78, 338-352.	2.5	27
65	Financing Public Capital When Rents Are Back: A Macroeconomic Henry George Theorem. FinanzArchiv, 2018, 74, 340.	0.2	3
66	Bioenergy production and sustainable development: science base for policymaking remains limited. GCB Bioenergy, 2017, 9, 541-556.	2.5	66
67	Climate change, equity and the Sustainable Development Goals: an urban perspective. Environment and Urbanization, 2017, 29, 159-182.	1.5	152
68	From Targets to Action: Rolling up our Sleeves after Paris. Global Challenges, 2017, 1, 1600007.	1.8	5
69	Future urban land expansion and implications for global croplands. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8939-8944.	3.3	757
70	The underestimated potential of solar energy to mitigate climate change. Nature Energy, 2017, 2, .	19.8	563
71	Lifting peripheral fortunes: Upgrading transit improves spatial, income and gender equity in Medellin. Cities, 2017, 70, 122-134.	2.7	27
72	Synergies and trade-offs between energy-efficient urbanization and health. Environmental Research Letters, 2017, 12, 114017.	2.2	20

#	Article	IF	CITATIONS
73	Govern land as a global commons. Nature, 2017, 546, 28-29.	13.7	36
74	Economic and ecological views on climate change mitigation with bioenergy and negative emissions. GCB Bioenergy, 2016, 8, 4-10.	2.5	51
75	Urban infrastructure choices structure climate solutions. Nature Climate Change, 2016, 6, 1054-1056.	8.1	144
76	Beyond Technology: Demand-Side Solutions for Climate Change Mitigation. Annual Review of Environment and Resources, 2016, 41, 173-198.	5.6	204
77	Teleconnected food supply shocks. Environmental Research Letters, 2016, 11, 035007.	2.2	96
78	Biophysical and economic limits to negative CO2 emissions. Nature Climate Change, 2016, 6, 42-50.	8.1	973
79	A â€~sustainability window' of urban form. Transportation Research, Part D: Transport and Environment, 2016, 45, 96-111.	3.2	44
80	Municipal policies accelerated urban sprawl and public debts in Spain. Land Use Policy, 2016, 54, 103-115.	2.5	42
81	A systematic framework of location value taxes reveals dismal policy design in most European countries. Land Use Policy, 2016, 51, 335-349.	2.5	18
82	Evolving Narratives of Low-Carbon Futures in Transportation. Transport Reviews, 2016, 36, 341-360.	4.7	87
83	Happy or liberal? Making sense of behavior in transport policy design. Transportation Research, Part D: Transport and Environment, 2016, 45, 64-83.	3.2	39
84	Towards typologies of urban climate and global environmental change. Environmental Research Letters, 2015, 10, 101001.	2.2	10
85	A conceptual framework for an urban areas typology to integrate climate change mitigation and adaptation. Urban Climate, 2015, 14, 116-137.	2.4	60
86	Closing the emission price gap. Global Environmental Change, 2015, 31, 132-143.	3.6	72
87	Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6283-6288.	3.3	388
88	Avoiding carbon lock-in: Policy options for advancing structural change. Economic Modelling, 2015, 50, 49-63.	1.8	77
89	A spatial typology of human settlements and their CO2 emissions in England. Global Environmental Change, 2015, 34, 13-21.	3.6	84
90	CO ₂ Emissions from Direct Energy Use of Urban Households in India. Environmental Science & Technology, 2015, 49, 11312-11320.	4.6	66

#	Article	IF	CITATIONS
91	Reducing urban heat wave risk in the 21st century. Current Opinion in Environmental Sustainability, 2015, 14, 221-231.	3.1	61
92	Transport: A roadblock to climate change mitigation?. Science, 2015, 350, 911-912.	6.0	307
93	Bioenergy and climate change mitigation: an assessment. GCB Bioenergy, 2015, 7, 916-944.	2.5	494
94	Using Attributional Life Cycle Assessment to Estimate Climate hange Mitigation Benefits Misleads Policy Makers. Journal of Industrial Ecology, 2014, 18, 73-83.	2.8	303
95	Challenging the European Climate Debate: Can Universal Climate Justice and Economics be Reconciled with Particularistic Politics?. Clobal Policy, 2014, 5, 6-14.	1.0	11
96	Urban Climate Change Mitigation in Europe: Looking at and beyond the Role of Population Density. Journal of the Urban Planning and Development Division, ASCE, 2014, 140, .	0.8	41
97	Changing the resilience paradigm. Nature Climate Change, 2014, 4, 407-409.	8.1	487
98	Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition. Renewable and Sustainable Energy Reviews, 2014, 38, 1015-1028.	8.2	101
99	Response to Comments on "Using Attributional Life Cycle Assessment to Estimate Climateâ€Change Mitigation …― Journal of Industrial Ecology, 2014, 18, 468-470.	2.8	18
100	How fuel prices determine public transport infrastructure, modal shares and urban form. Urban Climate, 2014, 10, 63-76.	2.4	53
101	Response to "On the uncanny capabilities of consequential LCA―by Sangwon Suh and Yi Yang (Int J Life) Tj 1559-1560.	ETQq1 1 C 2.2	.784314 rg ⁸ 11
102	Livelihood impacts of biofuel crop production: Implications for governance. Geoforum, 2014, 54, 248-260.	1.4	76
103	On the Sustainability of Renewable Energy Sources. Annual Review of Environment and Resources, 2013, 38, 169-200.	5.6	62
104	Carbon footprints of cities and other human settlements in the UK. Environmental Research Letters, 2013, 8, 035039.	2.2	355
105	Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment. Environmental Research Letters, 2013, 8, 035047.	2.2	44
106	Carbon Lock-Out: Advancing Renewable Energy Policy in Europe. Energies, 2012, 5, 323-354.	1.6	103
107	Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nature Climate Change, 2012, 2, 320-327.	8.1	120
108	Decarbonizing urban transport in European cities: four cases show possibly high co-benefits. Environmental Research Letters, 2012, 7, 044042.	2.2	110

IF # ARTICLE CITATIONS Can Bioenergy Assessments Deliver?. Economics of Energy and Environmental Policy, 2012, 1, . 24 110 Policy, Financing and Implementation., 2011, , 865-950. 23 Renewable Energy in the Context of Sustainable Development., 2011, , 707-790. 59 Climate policies for road transport revisited (II): Closing the policy gap with cap-and-trade. Energy 112 4.2 87 Policy, 2011, 39, 2100-2110. Climate policies for road transport revisited (I): Evaluation of the current framework. Energy Policy, 4.2 2011, 39, 2396-2406. 114 Compressed Air Vehicles. Transportation Research Record, 2010, 2191, 67-74. 1.0 29 Timescale-Invariant Pattern Recognition by Feedforward Inhibition and Parallel Signal Processing. 1.3 Neural Computation, 2010, 22, 1493-1510. Past-future information bottleneck in dynamical systems. Physical Review E, 2009, 79, 041925. 116 0.8 41 Timescale-Invariant Representation of Acoustic Communication Signals by a Bursting Neuron. Journal of Neuroscience, 2009, 29, 2575-2580. Economic and environmental evaluation of compressed-air cars. Environmental Research Letters, 118 2.2 37 2009, 4, 044011. Climate change mitigation and co-benefits of feasible transport demand policies in Beijing. 119 3.2 156 Transportation Research, Part D: Transport and Environment, 2009, 14, 120-131. Predictive Coding and the Slowness Principle: An Information-Theoretic Approach. Neural 120 1.344 Computation, 2008, 20, 1026-1041. Energy End-Use: Transport., 0,, 575-648. Equity, Environmental Justice, and Urban Climate Change., 0, , 173-224. 122 17 Low-Carbon Land Transport., 0,,.

FELIX CREUTZIG