Teunis B H Geijtenbeek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5129136/publications.pdf Version: 2024-02-01

		39113	24511
119	16,417	52	114
papers	citations	h-index	g-index
123	123	123	15767
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	SARSâ€CoVâ€2 infection activates dendritic cells via cytosolic receptors rather than extracellular TLRs. European Journal of Immunology, 2022, 52, 646-655.	1.6	9
2	Crosstalk between R848 and abortive HIVâ€1 RNAâ€induced signaling enhances antiviral immunity. Journal of Leukocyte Biology, 2022, , .	1.5	4
3	An optimized retroviral toolbox for overexpression and genetic perturbation of primary lymphocytes. Biology Open, 2022, 11, .	0.6	Ο
4	DDX3X structural analysis: Implications in the pharmacology and innate immunity. Current Research in Immunology, 2022, 3, 100-109.	1.2	3
5	Separate signaling events control TCR downregulation and T cell activation in primary human T cells. Immunity, Inflammation and Disease, 2021, 9, 223-238.	1.3	10
6	Autophagy-enhancing drugs limit mucosal HIV-1 acquisition and suppress viral replication ex vivo. Scientific Reports, 2021, 11, 4767.	1.6	13
7	HIV-1 subverts the complement system in semen to enhance viral transmission. Mucosal Immunology, 2021, 14, 743-750.	2.7	9
8	Therapeutic Liposomal Vaccines for Dendritic Cell Activation or Tolerance. Frontiers in Immunology, 2021, 12, 674048.	2.2	26
9	Abortive HIVâ€1 RNA induces proâ€1Lâ€1β maturation via protein kinase PKR and inflammasome activation in humans. European Journal of Immunology, 2021, 51, 2464-2477.	1.6	13
10	Variations in the Abortive HIV-1 RNA Hairpin Do Not Impede Viral Sensing and Innate Immune Responses. Pathogens, 2021, 10, 897.	1.2	1
11	Insertion of atypical glycans into the tumor antigen-binding site identifies DLBCLs with distinct origin and behavior. Blood, 2021, 138, 1570-1582.	0.6	9
12	Infection and transmission of SARSâ€CoVâ€2 depend on heparan sulfate proteoglycans. EMBO Journal, 2021, 40, e106765.	3.5	50
13	Complement Potentiates Immune Sensing of HIV-1 and Early Type I Interferon Responses. MBio, 2021, 12, e0240821.	1.8	6
14	<i>Borrelia miyamotoi</i> Activates Human Dendritic Cells and Elicits T Cell Responses. Journal of Immunology, 2020, 204, 386-393.	0.4	4
15	Mucosal Dendritic Cell Subsets Control HIV-1's Viral Fitness. Annual Review of Virology, 2020, 7, 385-402.	3.0	4
16	MAVS Genetic Variation Is Associated with Decreased HIV-1 Replication In Vitro and Reduced CD4+ T Cell Infection in HIV-1-Infected Individuals. Viruses, 2020, 12, 764.	1.5	3
17	Various Tastes of Sugar: The Potential of Glycosylation in Targeting and Modulating Human Immunity via C-Type Lectin Receptors. Frontiers in Immunology, 2020, 11, 134.	2.2	23
18	Vaginal dysbiosis associated-bacteria Megasphaera elsdenii and Prevotella timonensis induce immune activation via dendritic cells. Journal of Reproductive Immunology, 2020, 138, 103085.	0.8	41

#	Article	IF	CITATIONS
19	Syndecan 4 Upregulation on Activated Langerhans Cells Counteracts Langerin Restriction to Facilitate Hepatitis C Virus Transmission. Frontiers in Immunology, 2020, 11, 503.	2.2	5
20	Measles skin rash: Infection of lymphoid and myeloid cells in the dermis precedes viral dissemination to the epidermis. PLoS Pathogens, 2020, 16, e1008253.	2.1	13
21	Synthetic Abortive HIV-1 RNAs Induce Potent Antiviral Immunity. Frontiers in Immunology, 2020, 11, 8.	2.2	19
22	Negative and Positive Selection Pressure During Sexual Transmission of Transmitted Founder HIV-1. Frontiers in Immunology, 2019, 10, 1599.	2.2	14
23	Sexually transmitted hepatitis C virus infections: current trends, and recent advances in understanding the spread in men who have sex with men. Journal of the International AIDS Society, 2019, 22, e25348.	1.2	64
24	Langerhans Cells Sense <i>Staphylococcus aureus</i> Wall Teichoic Acid through Langerin To Induce Inflammatory Responses. MBio, 2019, 10, .	1.8	46
25	<scp>HIV</scp> â€1 exposure and immune activation enhance sexual transmission of Hepatitis C virus by primary Langerhans cells. Journal of the International AIDS Society, 2019, 22, e25268.	1.2	15
26	Sexually transmitted founder HIV-1 viruses are relatively resistant to Langerhans cell-mediated restriction. PLoS ONE, 2019, 14, e0226651.	1.1	14
27	Mannosylation of the Tumor Immunoglobulin Variable Region Informs Cell of Origin and Environmental Interactions in DLBCL Subsets. Blood, 2019, 134, 1505-1505.	0.6	1
28	DDX3 in HIV-1 infection and sensing: A paradox. Cytokine and Growth Factor Reviews, 2018, 40, 32-39.	3.2	28
29	Innate immune receptors drive dengue virus immune activation and disease. Future Virology, 2018, 13, 287-305.	0.9	17
30	Distinctive expression of T cell guiding molecules in human autoimmune lymph node stromal cells upon TLR3 triggering. Scientific Reports, 2018, 8, 1736.	1.6	20
31	Impaired lymph node stromal cell function during the earliest phases of rheumatoid arthritis. Arthritis Research and Therapy, 2018, 20, 35.	1.6	29
32	Differentiation of Langerhans Cells from Monocytes and Their Specific Function in Inducing IL-22–Specific Th Cells. Journal of Immunology, 2018, 201, 3006-3016.	0.4	16
33	C-Type Lectin Receptors in Antiviral Immunity and Viral Escape. Frontiers in Immunology, 2018, 9, 590.	2.2	126
34	Interplay between HIV-1 innate sensing and restriction in mucosal dendritic cells: balancing defense and viral transmission. Current Opinion in Virology, 2017, 22, 112-119.	2.6	11
35	RIC-l–like Receptor Triggering by Dengue Virus Drives Dendritic Cell Immune Activation and TH1 Differentiation. Journal of Immunology, 2017, 198, 4764-4771.	0.4	44
36	HIV-1 blocks the signaling adaptor MAVS to evade antiviral host defense after sensing of abortive HIV-1 RNA by the host helicase DDX3. Nature Immunology, 2017, 18, 225-235.	7.0	109

#	Article	IF	CITATIONS
37	Mucosal dendritic cells in HIV-1 susceptibility: a critical role for C-type lectin receptors. Future Virology, 2017, 12, 373-388.	0.9	1
38	Brief Report: Altered Innate Lymphoid Cell Subsets in Human Lymph Node Biopsy Specimens Obtained During the Atâ€Risk and Earliest Phases of Rheumatoid Arthritis. Arthritis and Rheumatology, 2017, 69, 70-76.	2.9	57
39	DCs facilitate B cell responses against microbial DNA via DC-SIGN. PLoS ONE, 2017, 12, e0185580.	1.1	1
40	RIG-I-like receptor activation by dengue virus drives follicular T helper cell formation and antibody production. PLoS Pathogens, 2017, 13, e1006738.	2.1	41
41	Dendritic Cell Immunotherapy, the Next Step in Cancer Treatment. Multidisciplinary Cancer Investigation, 2017, 1, 1-2.	0.1	1
42	Receptor usage dictates HIV-1 restriction by human TRIM5α in dendritic cell subsets. Nature, 2016, 540, 448-452.	13.7	143
43	DC-SIGN in Infection and Immunity. , 2016, , 129-150.		4
44	C-type lectin receptors in the control of T helper cell differentiation. Nature Reviews Immunology, 2016, 16, 433-448.	10.6	200
45	Probiotic Gut Microbiota Isolate Interacts with Dendritic Cells via Glycosylated Heterotrimeric Pili. PLoS ONE, 2016, 11, e0151824.	1.1	62
46	Borrelia burgdorferi Induces TLR2-Mediated Migration of Activated Dendritic Cells in an Ex Vivo Human Skin Model. PLoS ONE, 2016, 11, e0164040.	1.1	17
47	Flow Cytometry-Based Bead-Binding Assay for Measuring Receptor Ligand Specificity. Methods in Molecular Biology, 2016, 1390, 121-129.	0.4	2
48	HIV-1 border patrols: Langerhans cells control antiviral responses and viral transmission. Future Virology, 2015, 10, 1231-1243.	0.9	6
49	Immediate T-Helper 17 Polarization Upon Triggering CD11b/c on HIV-Exposed Dendritic Cells. Journal of Infectious Diseases, 2015, 212, 44-56.	1.9	22
50	Herbal medicine IMOD suppresses LPS-induced production of proinflammatory cytokines in human dendritic cells. Frontiers in Pharmacology, 2015, 6, 64.	1.6	4
51	SAMHD1 Degradation Enhances Active Suppression of Dendritic Cell Maturation by HIV-1. Journal of Immunology, 2015, 194, 4431-4437.	0.4	26
52	Langerhans Cell–Dendritic Cell Cross-Talk via Langerin and Hyaluronic Acid Mediates Antigen Transfer and Cross-Presentation of HIV-1. Journal of Immunology, 2015, 195, 1763-1773.	0.4	38
53	Diminished transmission of drug resistant HIV-1 variants with reduced replication capacity in a human transmission model. Retrovirology, 2014, 11, 113.	0.9	10
54	Fucose-based PAMPs prime dendritic cells for follicular T helper cell polarization via DC-SIGN-dependent IL-27 production. Nature Communications, 2014, 5, 5074.	5.8	90

#	Article	IF	CITATIONS
55	Caveolin-1 mediated uptake via langerin restricts HIV-1 infection in human Langerhans cells. Retrovirology, 2014, 11, 123.	0.9	41
56	Human immature Langerhans cells restrict CXCR4-using HIV-1 transmission. Retrovirology, 2014, 11, 52.	0.9	40
57	Fungal Engagement of the C-Type Lectin Mincle Suppresses Dectin-1-Induced Antifungal Immunity. Cell Host and Microbe, 2014, 15, 494-505.	5.1	134
58	Dectin-1 activation induces proliferation and migration of human keratinocytes enhancing wound re-epithelialization. Cellular Immunology, 2014, 289, 49-54.	1.4	49
59	Fucose-specific DC-SIGN signalling directs T helper cell type-2 responses via IKKε- and CYLD-dependent Bcl3 activation. Nature Communications, 2014, 5, 3898.	5.8	123
60	Ménage à trois: Borrelia, dendritic cells, and tick saliva interactions. Trends in Parasitology, 2014, 30, 95-103.	1.5	45
61	Measles Virus Suppresses RIG-I-like Receptor Activation in Dendritic Cells via DC-SIGN-Mediated Inhibition of PP1 Phosphatases. Cell Host and Microbe, 2014, 16, 31-42.	5.1	89
62	Antagonism of the Phosphatase PP1 by the Measles Virus V Protein Is Required for Innate Immune Escape of MDA5. Cell Host and Microbe, 2014, 16, 19-30.	5.1	109
63	Innate Recognition of HIV-1 Glycans: Implications for Infection, Transmission, and Immunity. , 2014, , 27-58.		Ο
64	C-type lectin receptors orchestrate antifungal immunity. Future Microbiology, 2013, 8, 839-854.	1.0	21
65	<scp>E</scp> adherin interactions are required for <scp>L</scp> angerhans cell differentiation. European Journal of Immunology, 2013, 43, 270-280.	1.6	30
66	Glycodendrimers prevent HIV transmission via DC-SIGN on dendritic cells. International Immunology, 2013, 25, 221-233.	1.8	50
67	Antiviral Immune Responses by Human Langerhans Cells and Dendritic Cells in HIV-1 Infection. Advances in Experimental Medicine and Biology, 2012, 762, 45-70.	0.8	20
68	The pathogenesis of measles. Current Opinion in Virology, 2012, 2, 248-255.	2.6	90
69	Actin' as a Death Signal. Immunity, 2012, 36, 557-559.	6.6	8
70	Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1Î ² via a noncanonical caspase-8 inflammasome. Nature Immunology, 2012, 13, 246-254.	7.0	514
71	An evolutionary perspective on Câ€ŧype lectins in infection and immunity. Annals of the New York Academy of Sciences, 2012, 1253, 149-158.	1.8	65
72	A Prominent Role for DC-SIGN+ Dendritic Cells in Initiation and Dissemination of Measles Virus Infection in Non-Human Primates. PLoS ONE, 2012, 7, e49573.	1.1	35

#	Article	IF	CITATIONS
73	Innate signaling in HIV-1 infection of dendritic cells. Current Opinion in HIV and AIDS, 2011, 6, 348-352.	1.5	28
74	Burn injury suppresses human dermal dendritic cell and Langerhans cell function. Cellular Immunology, 2011, 268, 29-36.	1.4	20
75	Human Langerhans cells capture measles virus through Langerin and present viral antigens to CD4 ⁺ T cells but are incapable of crossâ€presentation. European Journal of Immunology, 2011, 41, 2619-2631.	1.6	85
76	Early Target Cells of Measles Virus after Aerosol Infection of Non-Human Primates. PLoS Pathogens, 2011, 7, e1001263.	2.1	181
77	Selective C-Rel Activation via Malt1 Controls Anti-Fungal TH-17 Immunity by Dectin-1 and Dectin-2. PLoS Pathogens, 2011, 7, e1001259.	2.1	144
78	Langerin functions as an antiviral receptor on Langerhans cells. Immunology and Cell Biology, 2010, 88, 410-415.	1.0	64
79	HIV-1 exploits innate signaling by TLR8 and DC-SIGN for productive infection of dendritic cells. Nature Immunology, 2010, 11, 419-426.	7.0	243
80	Carbohydrate Signaling by C-Type Lectin DC-SIGN Affects NF-κB Activity. Methods in Enzymology, 2010, 480, 151-164.	0.4	16
81	Herpes Simplex Virus Type 2 Enhances HIV-1 Susceptibility by Affecting Langerhans Cell Function. Journal of Immunology, 2010, 185, 1633-1641.	0.4	69
82	C-type lectin Langerin is a β-glucan receptor on human Langerhans cells that recognizes opportunistic and pathogenic fungi. Molecular Immunology, 2010, 47, 1216-1225.	1.0	121
83	Langerhans cells in innate defense against pathogens. Trends in Immunology, 2010, 31, 452-459.	2.9	43
84	Isolation of Immature Primary Langerhans Cells from Human Epidermal Skin. Methods in Molecular Biology, 2010, 595, 55-65.	0.4	9
85	Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Nature Immunology, 2009, 10, 203-213.	7.0	433
86	Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nature Immunology, 2009, 10, 1081-1088.	7.0	424
87	Signalling through C-type lectin receptors: shaping immune responses. Nature Reviews Immunology, 2009, 9, 465-479.	10.6	1,062
88	MUC1 in human milk blocks transmission of human immunodeficiency virus from dendritic cells to T cells. Molecular Immunology, 2009, 46, 2309-2316.	1.0	84
89	Pathogen recognition by DC-SIGN shapes adaptive immunity. Future Microbiology, 2009, 4, 879-890.	1.0	79
90	Genital co-infections turn Langerhans cells from friends into foes during HIV-1 transmission. Future Virology, 2009, 4, 11-13.	0.9	0

#	Article	IF	CITATIONS
91	Mutz-3-derived Langerhans cells are a model to study HIV-1 transmission and potential inhibitors. Journal of Leukocyte Biology, 2009, 87, 637-643.	1.5	30
92	Langerhans cells and viral immunity. European Journal of Immunology, 2008, 38, 2377-2385.	1.6	55
93	Distinct roles for DC-SIGN+-dendritic cells and Langerhans cells in HIV-1 transmission. Trends in Molecular Medicine, 2008, 14, 12-19.	3.5	109
94	DC-SIGN and CD150 Have Distinct Roles in Transmission of Measles Virus from Dendritic Cells to T-Lymphocytes. PLoS Pathogens, 2008, 4, e1000049.	2.1	82
95	Salp15 Binding to DC-SIGN Inhibits Cytokine Expression by Impairing both Nucleosome Remodeling and mRNA Stabilization. PLoS Pathogens, 2008, 4, e31.	2.1	165
96	Dendritic cells mediate herpes simplex virus infection and transmission through the C-type lectin DC-SIGN. Journal of General Virology, 2008, 89, 2398-2409.	1.3	70
97	TNF-α and TLR agonists increase susceptibility to HIV-1 transmission by human Langerhans cells ex vivo. Journal of Clinical Investigation, 2008, 118, 3440-3452.	3.9	131
98	Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19464-19469.	3.3	140
99	Predominant Infection of CD150+ Lymphocytes and Dendritic Cells during Measles Virus Infection of Macaques. PLoS Pathogens, 2007, 3, e178.	2.1	226
100	C-Type Lectin DC-SIGN Modulates Toll-like Receptor Signaling via Raf-1 Kinase-Dependent Acetylation of Transcription Factor NF-1ºB. Immunity, 2007, 26, 605-616.	6.6	537
101	Innate signaling and regulation of Dendritic cell immunity. Current Opinion in Immunology, 2007, 19, 435-440.	2.4	146
102	Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nature Medicine, 2007, 13, 367-371.	15.2	563
103	Bile Salt-Stimulated Lipase from Human Milk Binds DC-SIGN and Inhibits Human Immunodeficiency Virus Type 1 Transfer to CD4 + T Cells. Antimicrobial Agents and Chemotherapy, 2006, 50, 3367-3374.	1.4	72
104	Measles Virus Targets DC-SIGN To Enhance Dendritic Cell Infection. Journal of Virology, 2006, 80, 3477-3486.	1.5	129
105	Interactions of DC-SIGN with Mac-1 and CEACAM1 regulate contact between dendritic cells and neutrophils. FEBS Letters, 2005, 579, 6159-6168.	1.3	88
106	Lewis X component in human milk binds DC-SIGN and inhibits HIV-1 transfer to CD4+ T lymphocytes. Journal of Clinical Investigation, 2005, 115, 3256-3264.	3.9	161
107	Hepatitis C Virus Targets DC-SIGN and L-SIGN To Escape Lysosomal Degradation. Journal of Virology, 2004, 78, 8322-8332.	1.5	131
108	Potency of HIV-1 envelope glycoprotein gp120 antibodies to inhibit the interaction of DC-SIGN with HIV-1 gp120. Virology, 2004, 329, 465-476.	1.1	24

#	Article	IF	CITATIONS
109	DC-SIGN: escape mechanism for pathogens. Nature Reviews Immunology, 2003, 3, 697-709.	10.6	847
110	Mycobacteria Target DC-SIGN to Suppress Dendritic Cell Function. Journal of Experimental Medicine, 2003, 197, 7-17.	4.2	971
111	Cutting Edge: Carbohydrate Profiling Identifies New Pathogens That Interact with Dendritic Cell-Specific ICAM-3-Grabbing Nonintegrin on Dendritic Cells. Journal of Immunology, 2003, 170, 1635-1639.	0.4	402
112	The Dendritic Cell-Specific Adhesion Receptor DC-SIGN Internalizes Antigen for Presentation to T Cells. Journal of Immunology, 2002, 168, 2118-2126.	0.4	568
113	Identification of Different Binding Sites in the Dendritic Cell-specific Receptor DC-SIGN for Intercellular Adhesion Molecule 3 and HIV-1. Journal of Biological Chemistry, 2002, 277, 11314-11320.	1.6	165
114	Subset of DC-SIGN+ dendritic cells in human blood transmits HIV-1 to T lymphocytes. Blood, 2002, 100, 1780-1786.	0.6	148
115	DC-SIGN–ICAM-2 interaction mediates dendritic cell trafficking. Nature Immunology, 2000, 1, 353-357.	7.0	465
116	Identification of DC-SIGN, a Novel Dendritic Cell–Specific ICAM-3 Receptor that Supports Primary Immune Responses. Cell, 2000, 100, 575-585.	13.5	1,558
117	DC-SIGN, a Dendritic Cell–Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells. Cell, 2000, 100, 587-597.	13.5	2,214
118	High Frequency of Adhesion Defects in B-Lineage Acute Lymphoblastic Leukemia. Blood, 1999, 94, 754-764.	0.6	99
119	Dendritic Cells Ferry HIV-1 from Periphery into Lymphoid Tissues. , 0, , 229-247.		1