Sadegh Sadeghzadeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5129123/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management. Energy, 2020, 193, 116840.	8.8	152
2	Mechanical properties of defective hybrid graphene-boron nitride nanosheets: A molecular dynamics study. Computational Materials Science, 2018, 149, 170-181.	3.0	69
3	A new multiscale methodology for modeling of single and multi-body solid structures. Computational Materials Science, 2012, 63, 1-11.	3.0	38
4	Effects of vacancies and divacancies on the failure of C3N nanosheets. Diamond and Related Materials, 2018, 89, 257-265.	3.9	33
5	Effect of Nb on the structural, optical and photocatalytic properties of Al-doped ZnO thin films fabricated by the sol-gel method. Ceramics International, 2018, 44, 20170-20177.	4.8	31
6	The mechanical design of hybrid graphene/boron nitride nanotransistors: Geometry and interface effects. Solid State Communications, 2018, 270, 82-86.	1.9	30
7	Application of Higher Order Hamiltonian Approach to the Nonlinear Vibration of Micro Electro Mechanical Systems. Latin American Journal of Solids and Structures, 2016, 13, 478-497.	1.0	28
8	Interfacial Thermal Resistance Mechanism for the Polyaniline (C ₃ N)–Graphene Heterostructure. Journal of Physical Chemistry C, 2020, 124, 14316-14326.	3.1	28
9	Studying the effects of longitudinal and transverse defects on the failure of hybrid graphene-boron nitride sheets: A molecular dynamics simulation. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 104, 71-81.	2.7	27
10	A comparative study on the mechanical, physical and morphological properties of cement-micro/nanoFe3O4 composite. Scientific Reports, 2020, 10, 2859.	3.3	27
11	Nanoparticle mass detection by single and multilayer graphene sheets: Theory and simulations. Applied Mathematical Modelling, 2016, 40, 7862-7879.	4.2	26
12	Investigation of tetracosane thermal transport in presence of graphene and carbon nanotube fillers––A molecular dynamics study. Journal of Energy Storage, 2020, 29, 101321.	8.1	25
13	The mechanical design of graphene nanodiodes and nanotransistors: geometry, temperature and strain effects. RSC Advances, 2016, 6, 86324-86333.	3.6	23
14	Modal identification of single layer graphene nano sheets from ambient responses using frequency domain decomposition. European Journal of Mechanics, A/Solids, 2017, 65, 70-78.	3.7	22
15	Investigating the effects of adding hybrid nanoparticles, graphene and boron nitride nanosheets, to octadecane on its thermal properties. RSC Advances, 2020, 10, 14785-14793.	3.6	21
16	Aspect ratio and dimension effects on nanorod manipulation by atomic force microscope. Micro and Nano Letters, 2010, 5, 324.	1.3	20
17	Thermal resistance analysis of hybrid graphene-boron nitride nanosheets: The effect of geometry, temperature, size, strain and structural defects. Computational Materials Science, 2020, 174, 109484.	3.0	19
18	Molecular dynamics simulations of phase change materials for thermal energy storage: a review. RSC Advances, 2022, 12, 14776-14807.	3.6	19

SADEGH SADEGHZADEH

#	Article	IF	CITATIONS
19	Resistance and rupture analysis of single- and few-layer graphene nanosheets impacted by various projectiles. Superlattices and Microstructures, 2016, 97, 617-629.	3.1	18
20	Borophene sheets with in-plane chain-like boundaries; a reactive molecular dynamics study. Computational Materials Science, 2018, 143, 1-14.	3.0	18
21	Constructing a three-dimensional graphene structure via bonding layers by ion beam irradiation. Scientific Reports, 2019, 9, 8127.	3.3	18
22	Thermal conductivity and interfacial thermal resistance behavior for the polyaniline–boron carbide heterostructure. Physical Chemistry Chemical Physics, 2021, 23, 13310-13322.	2.8	18
23	Numerical and experimental investigation on electric vehicles battery thermal management under New European Driving Cycle. Applied Energy, 2022, 315, 119026.	10.1	18
24	Vibrational modes and frequencies of borophene in comparison with graphene nanosheets. Superlattices and Microstructures, 2018, 117, 271-282.	3.1	17
25	Influence of Stone-Wales defects on the mechanical properties of graphene-like polyaniline (PANI) C3N nanosheets. Diamond and Related Materials, 2020, 101, 107555.	3.9	16
26	Precise manipulation of metallic nanoparticles: Multiscale analysis. Computational Materials Science, 2013, 67, 11-20.	3.0	15
27	Benchmarking the penetration-resistance efficiency of multilayer graphene sheets due to spacing the graphene layers. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	15
28	The creation of racks and nanopores creation in various allotropes of boron due to the mechanical loads. Superlattices and Microstructures, 2017, 111, 1145-1161.	3.1	15
29	Dynamic modeling for nanomanipulation of polystyrene nanorod by atomic force microscope. Scientia Iranica, 2011, 18, 808-815.	0.4	14
30	Semi-analytical motion analysis of nano-steering devices, segmented piezotube scanners. International Journal of Mechanical Sciences, 2011, 53, 536-548.	6.7	14
31	A study of thermal conductivity in graphene diodes and transistors with intrinsic defects and subjected to metal impurities. Superlattices and Microstructures, 2016, 100, 97-111.	3.1	14
32	Computational design of graphene sheets for withstanding the impact of ultrafast projectiles. Journal of Molecular Graphics and Modelling, 2016, 70, 196-211.	2.4	14
33	Equivalent mechanical boundary conditions for single layer graphene sheets. Micro and Nano Letters, 2016, 11, 248-252.	1.3	14
34	Vibration analysis of defected and pristine triangular single-layer graphene nanosheets. Current Applied Physics, 2018, 18, 1327-1337.	2.4	13
35	Mechanical properties of intrinsic and defective hybrid polyaniline (C3N)-BC3 nanosheets in the armchair and zigzag configurations: a molecular dynamics study. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	2.3	13
36	Coarse-grained molecular dynamics simulation of automatic nanomanipulation process: The effect of tip damage on the positioning errors. Computational Materials Science, 2012, 60, 201-211.	3.0	12

SADEGH SADEGHZADEH

#	Article	IF	CITATIONS
37	Effects of physical boundary conditions on the transverse vibration of single-layer graphene sheets. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	12
38	On the oblique collision of gaseous molecules with graphene nanosheets. Molecular Simulation, 2016, 42, 1233-1241.	2.0	11
39	High-performance cement containing nanosized Fe3O4–decorated graphene oxide. Construction and Building Materials, 2020, 260, 120454.	7.2	11
40	Hypersonic impact properties of pristine and hybrid single and multi-layer C3N and BC3 nanosheets. Scientific Reports, 2021, 11, 7972.	3.3	11
41	Semi-analytic actuating and sensing in regular and irregular MEMs, single and assembled micro cantilevers. Applied Mathematical Modelling, 2013, 37, 4717-4732.	4.2	10
42	Conceptual design of a 5 MW OTEC power plant in the Oman Sea. Journal of Marine Engineering and Technology, 2017, 16, 94-102.	4.1	10
43	Tailoring the life cycle of lithiumâ€ion batteries with a passive cooling system: A comprehensive dynamic model. International Journal of Energy Research, 2021, 45, 7884-7902.	4.5	10
44	Wrinkling C3N nano-grids in uniaxial tensile testing; a molecular dynamics study. Diamond and Related Materials, 2019, 92, 130-137.	3.9	9
45	Aluminum nanocomposites reinforced with monolayer polyaniline (C ₃ N): assessing the mechanical and ballistic properties. RSC Advances, 2020, 10, 19134-19148.	3.6	8
46	Nonlocal strain gradient theory for dynamical modeling of a thermo-piezo-magnetically actuated spinning inhomogeneous nanoshell. Mechanics Based Design of Structures and Machines, 2022, 50, 1932-1953.	4.7	8
47	A semiâ€analytical solution for timeâ€varying latent heat thermal energy storage problems. International Journal of Energy Research, 2020, 44, 2726-2739.	4.5	8
48	Assessing mechanical properties of single-layer B-doped C3N and N-doped BC3 nanosheets and their hybrid. Computational Materials Science, 2021, 192, 110368.	3.0	8
49	A new modeling and compensation approach for creep and hysteretic loops in nanosteering by SPM's piezotubes. International Journal of Advanced Manufacturing Technology, 2009, 44, 1133-1143.	3.0	7
50	Role of mechanical and thermal nonlinearities in imaging by Atomic Force Microscope. International Journal of Mechanical Sciences, 2017, 122, 255-266.	6.7	7
51	A hybrid solution for analyzing nonlinear dynamics of electrostatically-actuated microcantilevers. Applied Mathematical Modelling, 2017, 48, 593-606.	4.2	7
52	Nano cluster manipulation success considering flexibility of system: Coarse grained molecular dynamics simulations. Scientia Iranica, 2012, 19, 1288-1298.	0.4	5
53	Effects of macro-scale uncertainties on the imaging and automatic manipulation of nanoparticles. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	5
54	A size dependent dynamic model for piezoelectric nanogenerators: effects of geometry, structural and environmental parameters. Materials Research Express, 2018, 5, 035508.	1.6	4

SADEGH SADEGHZADEH

#	Article	IF	CITATIONS
55	Nanoparticle mass detection by single-layer triangular graphene sheets, the extraordinary geometry for detection of nanoparticles. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	4
56	On the desalination performance of multi-layer graphene membranes; A molecular dynamics study. Computational Materials Science, 2021, 191, 110335.	3.0	4
57	Coupled dynamics of piezo-tube and microcantilever in scanning probe devices and sensitive samples imaging. Micro and Nano Letters, 2012, 7, 986-990.	1.3	3
58	Tailoring the effects of interface physics on the free vibration of graphene-boron nitride heterostructure. Diamond and Related Materials, 2022, 124, 108939.	3.9	3
59	A new approach to dispersing and stabilizing graphene in aqueous nanofluids of enhanced efficiency of energy-systems. Scientific Reports, 2020, 10, 7707.	3.3	2
60	Crack pathway analysis in graphene-like BC3 nanosheets: Towards a deeper understanding. Journal of Molecular Graphics and Modelling, 2021, 107, 107980.	2.4	2
61	A semi-analytic modeling of nonlinearities for nano-robotic applications, macro and micro sized systems. , 2011, , .		1
62	A shape-feedback approach for more precise automatic nano manipulation process. , 2011, , .		1
63	Manipulation of Nanorods on Elastic Substrate, Modeling and Analysis. , 0, , .		1
64	Effects of damping and stiffness of AFM cantilever on the imaging of fine surfaces. Microscopy Research and Technique, 2016, 79, 982-992.	2.2	1
65	Effect of nitrogen or boron impurities on the mechanical and vibrational properties of graphene nanosheets: a molecular dynamics approach. Micro and Nano Letters, 2020, 15, 977-983.	1.3	1
66	Tailoring the hardness of aluminum surface reinforced with graphene and C3N nanosheets. Diamond and Related Materials, 2022, 127, 109139.	3.9	1
67	Reactive molecular dynamics simulation of thermo-physicochemical properties of non-covalent functionalized graphene nanofluids. Materials Today Communications, 2022, 32, 103869.	1.9	1
68	A multi-scale Dynamic approach for nano-robotic applications. , 2011, , .		0
69	Enhancement of nanogripper performance by using soft material coating. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 2082-2089.	2.1	0
70	Twoâ€region semiâ€analytical solution for latent heat thermal energy storage systems. International Journal of Energy Research, 0, , .	4.5	0
71	Impact dynamics of metallic nano particles in collision with graphene nano sheets. Scientia Iranica, 2016, 23, 3153-3162.	0.4	0
72	Free Vibration Analysis of a Spinning Smart Piezoelectrically Actuated Heterogeneous Nanoscale Shell with Nonlocal Strain Gradient Theory. Journal of Nano Research, 0, 64, 1-19.	0.8	0