Eric P Knoshaug

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5128954/publications.pdf

Version: 2024-02-01

41 papers

1,743 citations

394421 19 h-index 289244 40 g-index

43 all docs

43 docs citations

times ranked

43

2515 citing authors

#	Article	IF	CITATIONS
1	Bioproducts from high-protein algal biomass: an economic and environmental sustainability review and risk analysis. Sustainable Energy and Fuels, 2022, 6, 2398-2422.	4.9	6
2	Enabling Production of Algal Biofuels by Techno-Economic Optimization of Co-Product Suites. Frontiers in Chemical Engineering, 2022, 3, .	2.7	8
3	Chimeric cellobiohydrolase I expression, activity, and biochemical properties in three oleaginous yeast. Biotechnology for Biofuels, 2021, 14, 6.	6.2	4
4	Nuclear and chloroplast genome engineering of a productive non-model alga Desmodesmus armatus: Insights into unusual and selective acquisition mechanisms for foreign DNA. Algal Research, 2021, 53, 102152.	4.6	11
5	Methodological review of genetic engineering approaches for non-model algae. Algal Research, 2021, 54, 102221.	4.6	24
6	Catalytic Hydroprocessing of Single-Cell Oils to Hydrocarbon Fuels. Johnson Matthey Technology Review, 2021, 65, 227-246.	1.0	3
7	Reliability metrics and their management implications for open pond algae cultivation. Algal Research, 2021, 55, 102249.	4.6	24
8	Disruption of the Snf1 Gene Enhances Cell Growth and Reduces the Metabolic Burden in Cellulase-Expressing and Lipid-Accumulating Yarrowia lipolytica. Frontiers in Microbiology, 2021, 12, 757741.	3.5	6
9	Upgrading brown grease for the production of biofuel intermediates. Bioresource Technology Reports, 2020, 9, 100344.	2.7	13
10	Anaerobic Storage and Conversion of Microalgal Biomass to Manage Seasonal Variation in Cultivation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13310-13317.	6.7	11
11	An alternative biorefinery approach to address microalgal seasonality: blending with spent coffee grounds. Sustainable Energy and Fuels, 2020, 4, 3400-3408.	4.9	10
12	High titer fatty alcohol production in Lipomyces starkeyi by fed-batch fermentation. Current Research in Biotechnology, 2020, 2, 83-87.	3.7	5
13	Draft Genome Sequence of the Biofuel-Relevant Microalga Desmodesmus armatus. Microbiology Resource Announcements, 2020, 9, .	0.6	9
14	Nitrogen derived from Combined Algal Processing supports algae cultivation for biofuels. Algal Research, 2020, 50, 101987.	4.6	8
15	Metabolic engineering of Zymomonas mobilis for anaerobic isobutanol production. Biotechnology for Biofuels, 2020, 13, 15.	6.2	49
16	Methods for Algal Protein Isolation and Proteome Analysis. Methods in Molecular Biology, 2020, 2096, 51-59.	0.9	0
17	Solvent-free spectroscopic method for high-throughput, quantitative screening of fatty acids in yeast biomass. Analytical Methods, 2019, 11, 58-69.	2.7	3
18	Demonstration and Evaluation of Hybrid Microalgae Aqueous Conversion Systems for Biofuel Production. ACS Sustainable Chemistry and Engineering, 2019, 7, 5835-5844.	6.7	14

#	Article	IF	CITATIONS
19	Demonstration of parallel algal processing: production of renewable diesel blendstock and a high-value chemical intermediate. Green Chemistry, 2018, 20, 457-468.	9.0	30
20	Pretreatment and fermentation of salt-water grown algal biomass as a feedstock for biofuels and high-value biochemicals. Algal Research, 2018, 36, 239-248.	4.6	23
21	Expression of an endoglucanase–cellobiohydrolase fusion protein in Saccharomyces cerevisiae, Yarrowia lipolytica, and Lipomyces starkeyi. Biotechnology for Biofuels, 2018, 11, 322.	6.2	13
22	Oleaginicity of the yeast strain Saccharomyces cerevisiae D5A. Biotechnology for Biofuels, 2018, 11, 258.	6.2	41
23	Phosphoproteome of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395, under Nitrogen-Replete and -Deplete Conditions. Frontiers in Bioengineering and Biotechnology, 2018, 6, 19.	4.1	1
24	Genome Sequence of the Oleaginous Green Alga, Chlorella vulgaris UTEX 395. Frontiers in Bioengineering and Biotechnology, 2018, 6, 37.	4.1	21
25	Ameliorating the Metabolic Burden of the Co-expression of Secreted Fungal Cellulases in a High Lipid-Accumulating Yarrowia lipolytica Strain by Medium C/N Ratio and a Chemical Chaperone. Frontiers in Microbiology, 2018, 9, 3276.	3.5	20
26	Unified field studies of the algae testbed public-private partnership as the benchmark for algae agronomics. Scientific Data, 2018, 5, 180267.	5.3	18
27	Lipid accumulation from glucose and xylose in an engineered, naturally oleaginous strain of Saccharomyces cerevisiae. Biofuel Research Journal, 2018, 5, 800-805.	13.3	13
28	The Algae Testbed Public-Private Partnership (ATP3) framework; establishment of a national network of testbed sites to support sustainable algae production. Algal Research, 2017, 25, 168-177.	4.6	39
29	Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi. Microbial Cell Factories, 2017, 16, 126.	4.0	14
30	Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review. Applied Energy, 2016, 177, 879-895.	10.1	260
31	Genome-Scale Metabolic Model for the Green Alga <i>Chlorella vulgaris</i> UTEX 395 Accurately Predicts Phenotypes under Autotrophic, Heterotrophic, and Mixotrophic Growth Conditions. Plant Physiology, 2016, 172, 589-602.	4.8	86
32	Fatty alcohol production in Lipomyces starkeyi and Yarrowia lipolytica. Biotechnology for Biofuels, 2016, 9, 227.	6.2	52
33	Combined algal processing: A novel integrated biorefinery process to produce algal biofuels and bioproducts. Algal Research, 2016, 19, 316-323.	4.6	184
34	The Chlorella vulgaris S-Nitrosoproteome under Nitrogen-Replete and -Deplete Conditions. Frontiers in Bioengineering and Biotechnology, 2016, 4, 100.	4.1	10
35	Novel transporters from <i>Kluyveromyces marxianus</i> and <i>Pichia guilliermondii</i> expressed in <i>Saccharomyces cerevisiae</i> enable growth on <scp>l</scp> â€arabinose and <scp>d</scp> â€xylose. Yeast, 2015, 32, 615-628.	1.7	43
36	The potential of photosynthetic aquatic species as sources of useful cellulose fibersâ€"a review. Journal of Applied Phycology, 2013, 25, 1123-1134.	2.8	20

#	Article	IF	CITATIONS
37	Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta, 2013, 237, 239-253.	3.2	367
38	Utilization and transport of l-arabinose by non-Saccharomyces yeasts. Cellulose, 2009, 16, 729-741.	4.9	19
39	Butanol Tolerance in a Selection of Microorganisms. Applied Biochemistry and Biotechnology, 2009, 153, 13-20.	2.9	205
40	Heterologous Expression of Two Ferulic Acid Esterases from Penicillium funiculosum. Applied Biochemistry and Biotechnology, 2008, 146, 79-87.	2.9	20
41	Exopolysaccharide Expression in Lactococcus lactis subsp. cremoris Ropy352: Evidence for Novel Gene Organization. Applied and Environmental Microbiology, 2007, 73, 897-905.	3.1	26