Cesare Mario Rizzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/512885/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Review of the fatigue strength of welded joints based on the notch stress intensity factor and SED approaches. International Journal of Fatigue, 2016, 84, 59-66.	5.7	55
2	Round robin study on structural hot-spot and effective notch stress analysis. Ships and Offshore Structures, 2008, 3, 335-345.	1.9	34
3	Experiences and recommendations for numerical analyses of notch stress intensity factor and averaged strain energy density. Engineering Fracture Mechanics, 2016, 165, 98-113.	4.3	28
4	Current practices and recent advances in condition assessment of aged ships. Ships and Offshore Structures, 2007, 2, 261-271.	1.9	25
5	EFD and CFD Design and Analysis of a Propeller in Decelerating Duct. International Journal of Rotating Machinery, 2012, 2012, 1-15.	0.8	21
6	Stability requirements for floating offshore wind turbine (FOWT) during assembly and temporary phases: Overview and application. Ocean Engineering, 2014, 84, 164-175.	4.3	21
7	Recent Industrial Developments of Marine Composites Limit States and Design Approaches on Strength. Journal of Marine Science and Application, 2020, 19, 553-566.	1.7	17
8	Recent developments in remote inspections of ship structures. International Journal of Naval Architecture and Ocean Engineering, 2020, 12, 881-891.	2.3	17
9	Finite element modeling strategies for sandwich composite laminates under compressive loading. Ocean Engineering, 2013, 63, 44-51.	4.3	15
10	Fatigue tests of notched specimens made from butt joints at steel. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 1526-1541.	3.4	15
11	An high order Mixed Interpolation Tensorial Components (MITC) shell element approach for modeling the buckling behavior of delaminated composites. Composite Structures, 2014, 108, 657-666.	5.8	14
12	Development and validation of a numerical model for the simulation of high-velocity impacts on advanced composite armor systems. Nonlinear Dynamics, 2018, 91, 1791-1816.	5.2	12
13	Interlaminar shear strength of marine composite laminates: Tests and numerical simulations. Composite Structures, 2014, 112, 122-133.	5.8	11
14	Testing and simulation of a bolted and bonded joint between steel deck and composite side shell plating of a naval vessel. Engineering Structures, 2018, 172, 228-238.	5.3	9
15	Shock effects of underwater explosion on naval ship foundations: Validation of numerical models by dedicated tests. Ocean Engineering, 2022, 253, 111290.	4.3	9
16	An analytical/numerical study on buckling behaviour of typical composite top hat stiffened panels. Ships and Offshore Structures, 2012, 7, 151-164.	1.9	8
17	Fatigue strength of a typical ship structural detail: tests and calculation methods. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30, 653-663.	3.4	7
18	Survey on fatigue strength of cast bronzes intended for marine propellers. Fatigue and Fracture of Engineering Materials and Structures, 2016, 39, 793-816.	3.4	5

#	Article	IF	CITATIONS
19	Condition assessment of ship structure using robot assisted 3D-reconstruction. Ship Technology Research, 2021, 68, 129-146.	2.5	5
20	Fitness-for-service assessment of defected welded structural details by experimental evaluation of the fatigue resistance S-N curve. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 847-858.	2.5	4
21	Material selection for the gas containment system of a compressed natural gas carrier fleet. Applied Ocean Research, 2016, 55, 37-47.	4.1	4
22	Assessment of ship robotic inspections. , 2020, , .		4
23	Performance characterization of high-strength steel and quenched and tempered steels and their joints for structural applications. Welding in the World, Le Soudage Dans Le Monde, 2021, 65, 289-300.	2.5	4
24	Application of Reliability Analysis to the Fatigue of Typical Welded Joints of Ships. Ship Technology Research, 2007, 54, 89-100.	2.5	3
25	Direct scantling assessment of propeller blades. Applied Ocean Research, 2016, 59, 589-605.	4.1	3
26	Fatigue assessment of web-stiffened corners in plated structures by local approaches. Ship Technology Research, 2018, 65, 69-78.	2.5	3
27	On the rig dock tuning of large sail yachts. Ocean Engineering, 2019, 183, 384-397.	4.3	3
28	Robotic inspection of ships: inherent challenges and assessment of their effectiveness. Ships and Offshore Structures, 2022, 17, 742-756.	1.9	3
29	Inspection of aged ships and offshore structures. , 2008, , 367-406.		2
30	Fatigue Strength Assessment of Propellers by Means of Weakly Coupled CFD and FEM Analyses. , 2014, , .		2
31	On the shear lag effective breadth concept for composite hull structures. Ships and Offshore Structures, 2015, 10, 272-289.	1.9	2
32	Dynamic buckling of masts of large sail ships. Ships and Offshore Structures, 2015, 10, 290-301.	1.9	2
33	Effects of uncertainties in loading conditions of bulk carriers on hull girder still water loads. Marine Structures, 2017, 55, 214-242.	3.8	2
34	A Fluid-Structure Interaction case study on a square sail in a wind tunnel. Ocean Engineering, 2018, 163, 136-147.	4.3	2
35	Scantling assessment of large yacht rigs using carbon-fiber and aluminum masts. Ocean Engineering, 2019, 190, 106480.	4.3	2
36	Uncertainties estimates of hull girder still water loads of bulk and dry cargo ships through Monte Carlo simulations. Marine Structures, 2020, 70, 102688.	3.8	2

#	Article	IF	CITATIONS
37	FSI simulations for sailing yacht high performance appendages. Ships and Offshore Structures, 2021, 16, 200-215.	1.9	1
38	A design approach to reduce hull weight of naval ships. Ship Technology Research, 0, , 1-16.	2.5	1
39	Special issue on passenger ships and yachts. Ships and Offshore Structures, 2015, 10, 219-220.	1.9	0
40	Effect of Combined Shear Stresses on the Ultimate Axial Response of the Double Bottom of a Containership. , 2016, , .		0