
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5128295/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	APPLICATIONS OF MULTIOBJECTIVE OPTIMIZATION IN CHEMICAL ENGINEERING. Reviews in Chemical Engineering, 2000, 16, 1-54.	2.3	281
2	Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU) using genetic algorithm (GA) with the jumping genes operator. Computers and Chemical Engineering, 2003, 27, 1785-1800.	2.0	182
3	Multiobjective Optimization of Steam Reformer Performance Using Genetic Algorithm. Industrial & Engineering Chemistry Research, 2000, 39, 706-717.	1.8	125
4	Multi-objective optimization of reverse osmosis desalination units using different adaptations of the non-dominated sorting genetic algorithm (NSGA). Computers and Chemical Engineering, 2005, 29, 1977-1995.	2.0	116
5	Reaction Engineering of Step Growth Polymerization. The Plenum Chemical Engineering Series, 1987, , .	0.1	114
6	Multiobjective dynamic optimization of an industrial nylon 6 semibatch reactor using genetic algorithm. Journal of Applied Polymer Science, 1998, 69, 69-87.	1.3	112
7	Multi-objective optimization of industrial hydrogen plants. Chemical Engineering Science, 2001, 56, 999-1010.	1.9	112
8	Multiobjective Optimization of Industrial FCC Units Using Elitist Nondominated Sorting Genetic Algorithm. Industrial & Engineering Chemistry Research, 2002, 41, 4765-4776.	1.8	87
9	Multi-objective Optimization of the Operation of an Industrial Low-Density Polyethylene Tubular Reactor Using Genetic Algorithm and Its Jumping Gene Adaptations. Industrial & Engineering Chemistry Research, 2006, 45, 3182-3199.	1.8	78
10	Multiobjective optimization of an industrial wiped-film pet reactor. AICHE Journal, 2000, 46, 1046-1058.	1.8	76
11	Multiobjective Optimization of Cyclone Separators Using Genetic Algorithm. Industrial & Engineering Chemistry Research, 2000, 39, 4272-4286.	1.8	67
12	Multi-objective optimization of membrane separation modules using genetic algorithm. Journal of Membrane Science, 2000, 176, 177-196.	4.1	65
13	Jumping gene adaptations of NSGA-II and their use in the multi-objective optimal design of shell and tube heat exchangers. Chemical Engineering Research and Design, 2008, 86, 123-139.	2.7	63
14	Dynamic Model of an Industrial Steam Reformer and Its Use for Multiobjective Optimization. Industrial & Engineering Chemistry Research, 2003, 42, 4028-4042.	1.8	62
15	Multiobjective optimization of an industrial wiped film poly(ethylene terephthalate) reactor: some further insights. Computers and Chemical Engineering, 2001, 25, 391-407.	2.0	56
16	Multi-objective Optimal Synthesis and Design of Froth Flotation Circuits for Mineral Processing, Using the Jumping Gene Adaptation of Genetic Algorithm. Industrial & Engineering Chemistry Research, 2005, 44, 2621-2633.	1.8	55
17	Multiobjective optimization of a free radical bulk polymerization reactor using genetic algorithm. Macromolecular Theory and Simulations, 1999, 8, 46-53.	0.6	53
18	Design stage optimization of an industrial low-density polyethylene tubular reactor for multiple objectives using NSGA-II and its jumping gene adaptations. Chemical Engineering Science, 2007, 62, 2346-2365.	1.9	53

#	Article	IF	CITATIONS
19	Multi-objective Optimization of an Industrial Crude Distillation Unit Using the Elitist Non-Dominated Sorting Genetic Algorithm. Chemical Engineering Research and Design, 2004, 82, 611-623.	2.7	50
20	Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit (FCCU) using two jumping gene adaptations of simulated annealing. Computers and Chemical Engineering, 2007, 31, 1496-1515.	2.0	47
21	Molecular weight distribution and moments for condensation polymerization of monomers having reactivity different from their homologues. Polymer, 1979, 20, 305-310.	1.8	45
22	Free radical polymerizations associated with the trommsdorff effect under semibatch reactor conditions. I: Modeling. Polymer Engineering and Science, 1995, 35, 1290-1299.	1.5	42
23	Simultaneous optimization of the performance of flotation circuits and their simplification using the jumping gene adaptations of genetic algorithm. International Journal of Mineral Processing, 2005, 77, 165-185.	2.6	42
24	INVITED REVIEW SIMULATION OF STEP GROWTH POLYMERIZATIONS. Chemical Engineering Communications, 1983, 20, 1-52.	1.5	38
25	Use of genetic algorithms in the optimization of free radical polymerizations exhibiting the trommsdorff effect. Journal of Applied Polymer Science, 1997, 63, 529-548.	1.3	38
26	Modelling of propylene polymerization in an isothermal slurry reactor. Polymer, 1991, 32, 2842-2852.	1.8	35
27	Multiobjective optimization of the continuous casting process for poly (methyl methacrylate) using adapted genetic algorithm. Journal of Applied Polymer Science, 2000, 78, 1439-1458.	1.3	34
28	Applications of Genetic Algorithm in Polymer Science and Engineering. Materials and Manufacturing Processes, 2003, 18, 523-532.	2.7	34
29	Rate of condensation polymerization for monomers having reactivities different from their polymers. Polymer, 1977, 18, 851-852.	1.8	32
30	Simulation of tubular low-density polyethylene. Polymer Engineering and Science, 1985, 25, 37-47.	1.5	32
31	A molecular model for solid-state polymerization of nylon 6. Journal of Applied Polymer Science, 1992, 45, 507-520.	1.3	32
32	Multi-objective optimization of fuel oil blending using the jumping gene adaptation of genetic algorithm. Fuel Processing Technology, 2007, 88, 51-63.	3.7	32
33	Optimization of Venturi Scrubbers Using Genetic Algorithm. Industrial & Engineering Chemistry Research, 2002, 41, 2988-3002.	1.8	31
34	Simulation of reversible nylon-6,6 polymerization. Polymer, 1981, 22, 387-390.	1.8	30
35	Simulation of propylene polymerization: an efficient algorithm. Polymer, 1992, 33, 1477-1485.	1.8	30
36	Multiobjective optimization of an industrial semibatch nylon 6 reactor. Journal of Applied Polymer Science, 1995, 58, 2357-2371.	1.3	30

#	Article	IF	CITATIONS
37	Viscosity of bulk free radical polymerizing systems under near-isothermal and non-isothermal conditions. Polymer, 2006, 47, 3028-3035.	1.8	30
38	Multi-Objective Optimization of Pressure Swing Adsorbers for Air Separation. Industrial & Engineering Chemistry Research, 2007, 46, 3751-3765.	1.8	30
39	Multiobjective Optimal Design of Heat Exchanger Networks Using New Adaptations of the Elitist Nondominated Sorting Genetic Algorithm, NSGA-II. Industrial & Engineering Chemistry Research, 2008, 47, 3489-3501.	1.8	30
40	Bulk free radical polymerizations of methyl methacrylateunder non-isothermal conditions and with intermediate additionof initiator: Experiments and modeling. Polymer, 2005, 46, 11451-11462.	1.8	29
41	Molecular weight distributions for reversible nylon-6 polymerizations in batch reactors. Polymer, 1981, 22, 481-487.	1.8	27
42	Modelling of resole type phenol formaldehyde polymerization. Polymer, 1981, 22, 1699-1704.	1.8	27
43	SIMULATION AND DESIGN OF NYLON 6 REACTORS. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 1986, 26, 183-247.	2.2	27
44	Simulation of an industrial semibatch nylon 6 reactor: optimal parameter estimation. Polymer, 1994, 35, 3722-3734.	1.8	27
45	Multiobjective optimization of an industrial nylon-6 semibatch reactor system using genetic algorithm. Journal of Applied Polymer Science, 1999, 73, 729-739.	1.3	26
46	Applications of the Non-Dominated Sorting Genetic Algorithm (NSGA) in Chemical Reaction Engineering. International Journal of Chemical Reactor Engineering, 2003, 1, .	0.6	26
47	Multi-Objective Optimization of Semi-Batch Copolymerization Reactors Using Adaptations of Genetic Algorithm. Macromolecular Theory and Simulations, 2004, 13, 73-85.	0.6	26
48	Simulation of molecular weight distribution and cyclic oligomer formation in the polymerization of nylon 6. Journal of Applied Polymer Science, 1981, 26, 2153-2163.	1.3	25
49	Simulation of three-stage nylon 6 reactors with intermediate mass transfer at finite rates. Journal of Applied Polymer Science, 1982, 27, 3089-3101.	1.3	24
50	MODELING OF HYDROLYTIC POLYMERIZATION IN A SEMIBATCH NYLON 6 REACTOR. Chemical Engineering Communications, 1992, 113, 63-89.	1.5	22
51	Free radical polymerizations associated with the trommsdorff effect under semibatch reactor conditions. II: Experimental responses to step changes in temperature. Polymer Engineering and Science, 1996, 36, 311-321.	1.5	22
52	On-line optimization of free radical bulk polymerization reactors in the presence of equipment failure. Journal of Applied Polymer Science, 1999, 71, 2101-2120.	1.3	22
53	On-Line Optimizing Control of Bulk Free Radical Polymerization Reactors under Temporary Loss of Temperature Regulation:Â Experimental Study on a 1-L Batch Reactor. Industrial & Engineering Chemistry Research, 2006, 45, 7530-7539.	1.8	22
54	Modelling of reversible poly(ethylene terephthalate) reactors. Journal of Applied Polymer Science, 1982, 27, 4421-4438.	1.3	21

#	Article	IF	CITATIONS
55	Optimization of nonvaporizing nylon 6 reactors with stopping conditions and end-point constraints. Polymer Engineering and Science, 1986, 26, 1033-1044.	1.5	21
56	Steady state simulation of continuous-flow stirred-tank slurry propylene polymerization reactors. Polymer Engineering and Science, 1992, 32, 732-742.	1.5	21
57	On-Line Optimizing Control of Bulk Polymerizations:Â 1. Development of a Software Sensor. Industrial & Engineering Chemistry Research, 1998, 37, 2436-2445.	1.8	21
58	On-line optimizing control of bulk polymerization of methyl methacrylate: Some experimental results for heater failure. Journal of Applied Polymer Science, 2002, 85, 2350-2360.	1.3	21
59	Modeling and simulation of fixed bed adsorbers (FBAs) for multi-component gaseous separations. Computers and Chemical Engineering, 2007, 31, 1282-1295.	2.0	21
60	Multiobjective dynamic optimization of a nonvaporizing nylon 6 batch reactor. Polymer Engineering and Science, 1994, 34, 1161-1172.	1.5	20
61	Use of Agitator Power as a Soft Sensor for Bulk Free-Radical Polymerization of Methyl Methacrylate in Batch Reactors. Industrial & Engineering Chemistry Research, 2006, 45, 4243-4255.	1.8	20
62	Simultaneous optimization of the performance of flotation circuits and their simplification using the jumping gene adaptations of genetic algorithm-II: More complex problems. International Journal of Mineral Processing, 2006, 79, 149-166.	2.6	20
63	Multiobjective optimization of the dynamic operation of an industrial steam reformer using the jumping gene adaptations of simulated annealing. Asia-Pacific Journal of Chemical Engineering, 2006, 1, 21-31.	0.8	20
64	Multiobjective Optimization of a Fixed Bed Maleic Anhydride Reactor Using an Improved Biomimetic Adaptation of NSGA-II. Industrial & Engineering Chemistry Research, 2012, 51, 3279-3294.	1.8	20
65	Molecular weight distribution of polyethylene terephthalate in homogeneous, continuous-flow-stirred tank reactors. Polymer Engineering and Science, 1982, 22, 314-323.	1.5	19
66	Optimization of the transesterification stage of polyethylene terephthalate reactors. Polymer Engineering and Science, 1984, 24, 185-193.	1.5	19
67	Optimal parameter estimation for methyl methacrylate polymerization. Polymer, 1991, 32, 3233-3243.	1.8	19
68	Optimal temperature profiles for methylmethacrylate polymerization in the presence of end point constraints. Polymer Engineering and Science, 1991, 31, 1708-1715.	1.5	19
69	Molecular model for solid-state polymerization of nylon 6. II. An improved model. Journal of Applied Polymer Science, 1994, 53, 85-103.	1.3	19
70	Biomimicking Altruistic Behavior of Honey Bees in Multi-objective Genetic Algorithm. Industrial & Engineering Chemistry Research, 2009, 48, 9671-9685.	1.8	19
71	Slurry-phase ethylene polymerization processes: a review on multiscale modeling and simulations. Reviews in Chemical Engineering, 2022, 38, 539-568.	2.3	19
72	Modelling of Resoleâ€ŧype Phenol Formaldehyde Polymerisation in Homogeneous, Continuousâ€Flow, Stirredâ€Tank Reactors. British Polymer Journal, 1980, 12, 121-129.	0.7	17

#	Article	IF	CITATIONS
73	Condensation polymerization of ARB type monomers in CSTRs wherein the monomer is R times more reactive than other homologues. Polymer, 1980, 21, 1323-1326.	1.8	17
74	Molecular weight distributions in novolac type phenol-formaldehyde polymerizations. Polymer, 1982, 23, 215-221.	1.8	17
75	Reversible polycondensation characterized by unequal reactivities of functional groups. Polymer, 1982, 23, 222-228.	1.8	17
76	Simulation of reversible polycondensations with monomer having reactivity different from that of higher homologs. Journal of Polymer Science, Polymer Physics Edition, 1982, 20, 933-945.	1.0	17
77	Optimal temperature profiles for nylon 6 polymerization in plug-flow reactors. Journal of Applied Polymer Science, 1983, 28, 2261-2279.	1.3	17
78	Solution of final stages of polyethylene terephthalate reactors using orthogonal collocation technique. Polymer Engineering and Science, 1984, 24, 194-204.	1.5	17
79	Simulation of an industrial nylon 6 tubular reactor. Journal of Applied Polymer Science, 1987, 33, 933-954.	1.3	17
80	Parametric sensitivity of chain polymerization reactors exhibiting the trommsdorff effect. Polymer Engineering and Science, 1989, 29, 1246-1258.	1.5	17
81	Free-radical polymerizations associated with the Trommsdorff effect under semibatch reactor conditions. III. Experimental responses to step changes in initiator concentration. Journal of Applied Polymer Science, 1996, 59, 749-758.	1.3	17
82	Multiobjective optimization of an industrial nylonâ€6 semi batch reactor using the aâ€ j umping gene adaptations of genetic algorithm and simulated annealing. Polymer Engineering and Science, 2008, 48, 2198-2215.	1.5	17
83	Dynamic simulation of propylene polymerization in continuous flow stirred tank reactors. Polymer Engineering and Science, 1993, 33, 368-374.	1.5	16
84	Modeling of Higher Cyclic Oligomer Formation in Nylon 6 Polymerization. Industrial & Engineering Chemistry Research, 1997, 36, 1202-1210.	1.8	16
85	An experimental study on bulk and solution polymerization of methyl methacrylate with responses to step changes in temperature. Chemical Engineering Journal, 1998, 70, 25-35.	6.6	16
86	MO optimization of phthalic anhydride industrial catalytic reactors using guided GA with the adapted jumping gene operator. Chemical Engineering Research and Design, 2008, 86, 959-976.	2.7	16
87	Computational scheme for the calculation of molecular weight distributions for nylon 6 polymerization in homogeneous, continuous-flow stirred-tank reactors with continuous removal of water. Polymer Engineering and Science, 1982, 22, 849-856.	1.5	15
88	Simulation and optimization of the continuous tower process for styrene polymerization. Journal of Applied Polymer Science, 2004, 94, 775-788.	1.3	15
89	Condensation polymerizations in ideal continuous-flow-stirred tank reactors of monomers violating the equal reactivity hypothesis. Journal of Applied Polymer Science, 1980, 25, 1049-1058.	1.3	14
90	Mass transfer effects in polycondensation reactors wherein functional groups are not equally reactive. Journal of Applied Polymer Science, 1982, 27, 1217-1231.	1.3	14

#	Article	IF	CITATIONS
91	Modelling of intramolecular reactions in the step-growth polymerization of multifunctional monomers. Polymer, 1986, 27, 583-591.	1.8	14
92	Optimization of a tubular nylon 6 reactor with radial gradients. Polymer Engineering and Science, 1991, 31, 596-606.	1.5	14
93	Modeling and simulation of an industrial slurry phase ethylene polymerization reactor: effect of reactor operating variables. Iranian Polymer Journal (English Edition), 2020, 29, 811-825.	1.3	14
94	Modelling of reversible novolac type phenol-formaldehyde polymerization. Polymer, 1982, 23, 1929-1936.	1.8	13
95	Simulation of nylon 6 polymerization in tubular reactors with recycle. Journal of Applied Polymer Science, 1983, 28, 1625-1640.	1.3	13
96	Optimization of the polycondensation stage of poly(ethylene terephthalate) reactors. Journal of Applied Polymer Science, 1984, 29, 1045-1061.	1.3	13
97	Modelling of a semibatch polypropylene slurry reactor. Polymer, 1993, 34, 4417-4426.	1.8	13
98	Free-radical polymerizations associated with the Trommsdorff effect under semibatch reactor conditions. IV. On-line inferential-state estimation. Journal of Applied Polymer Science, 1997, 64, 1861-1877.	1.3	13
99	Software sensor for the bulk polymerization of systems exhibiting the trommsdorff effect using viscosity measurements. Journal of Applied Polymer Science, 1999, 73, 2309-2326.	1.3	13
100	Biomimetic Adaptations of GA and SA for the Robust MO Optimization of an Industrial Nylon-6 Reactor. Materials and Manufacturing Processes, 2008, 24, 38-46.	2.7	13
101	Simulation of reversible AA + B′B″ polycondensations in wiped film reactors. Journal of Applied Polymer Science, 1983, 28, 1063-1076.	1.3	12
102	Analysis of wiped film reactors using the orthogonal collocation technique. Journal of Applied Polymer Science, 1984, 29, 3217-3230.	1.3	12
103	Biomimetic Adaptation of the Evolutionary Algorithm, NSGA-II-aJG, Using the Biogenetic Law of Embryology for Intelligent Optimization. Industrial & Engineering Chemistry Research, 2009, 48, 8054-8067.	1.8	12
104	Simulation of reversible nylon-66 polymerization in homogeneous continuous-flow stirred tank reactors. Journal of Applied Polymer Science, 1982, 27, 1759-1769.	1.3	11
105	Molecular weight distributions in novolactype phenol-formaldehyde polymerization. Polymer, 1983, 24, 1180-1187.	1.8	11
106	Parametric sensitivity in tubular polymerization reactors. Chemical Engineering Science, 1987, 42, 2385-2394.	1.9	11
107	Vapor-grown carbon fibers from benzene pyrolysis. Carbon, 1995, 33, 253-258.	5.4	11
108	Dynamic viscoelastic properties of free radical bulk polymerizing systems under near-isothermal and non-isothermal conditions. Rheologica Acta, 2007, 46, 455-468.	1.1	11

#	Article	IF	CITATIONS
109	An experimental study on on-line optimizing control of free radical bulk polymerization in a rheometer–reactor assembly under conditions of power failure. Chemical Engineering Science, 2007, 62, 2790-2802.	1.9	11
110	Optimization of nonvaporizing nylon 6 reactors with stopping conditions. Journal of Applied Polymer Science, 1985, 30, 4529-4550.	1.3	10
111	Electropolymerization of 9-vinylanthracene: kinetic study using thin-layer spectroelectrochemistry. Polymer, 1988, 29, 1329-1334.	1.8	10
112	Vapor grown carbon fibers from pyrolysis of hydrocarbons: Modeling of filament growth and poisoning. Journal of Analytical and Applied Pyrolysis, 1993, 26, 131-144.	2.6	10
113	MODELING OF AN INDUSTRIAL WIPED FILM POLY(ETHYLENE TEREPHTHALATE) REACTOR. Polymer-Plastics Technology and Engineering, 2001, 9, 71-99.	0.7	10
114	Optimization of the polycondensation step of polyethylene terephthalate formation with continuous removal of condensation products. Polymer Engineering and Science, 1984, 24, 1205-1214.	1.5	9
115	Effect of segmental diffusion on irreversible, step growth polymerizations of ARB monomers. Polymer Engineering and Science, 1987, 27, 753-763.	1.5	9
116	Vapor grown carbon fibers from benzene pyrolysis: Filament length distributions. Carbon, 1996, 34, 127-134.	5.4	9
117	A general kinetic model for epoxy polymerization. Journal of Applied Polymer Science, 1998, 70, 1859-1876.	1.3	9
118	Simulation and Optimization of an Industrial Nylon 6 Reactor: A Review. Polymer-Plastics Technology and Engineering, 1998, 37, 201-239.	1.9	9
119	Multiobjective Optimization Using Genetic Algorithm. Advances in Chemical Engineering, 2013, 43, 205-245.	0.5	9
120	Simulation and multiâ€objective optimization of a fixed bed catalytic reactor to produce hydrogen using ethanol steam reforming. International Journal of Energy Research, 2019, 43, 4580-4591.	2.2	9
121	Multi-objective optimization of an industrial slurry phase ethylene polymerization reactor. International Journal of Chemical Reactor Engineering, 2022, 20, 649-659.	0.6	9
122	Modelling of an industrial autothermal nylon-6 flow reactor. Polymer, 1993, 34, 1716-1728.	1.8	8
123	Molecular weight distribution in novolac-type polymerization in homogeneous, continuous-flow stirred tank reactors. Polymer Engineering and Science, 1981, 21, 1218-1227.	1.5	7
124	Simulation of AA + B′B″ type reversible polymerizations with mass transfer of condensation product. Polymer, 1982, 23, 1367-1371.	1.8	7
125	Optimization of nylon 6 reactors with end-point constraints. Journal of Applied Polymer Science, 1984, 29, 2177-2194.	1.3	7
126	Simulation of ARB type reversible step growth polymerization in semibatch reactors. Journal of Applied Polymer Science, 1985, 30, 445-460.	1.3	7

#	Article	IF	CITATIONS
127	Polymerizations in the Presence of Vaporization: Experimental Results on Nylon-6. Industrial & Engineering Chemistry Research, 2008, 47, 9061-9071.	1.8	7
128	Modeling the Cytotoxicity of Cisplatin. Industrial & Engineering Chemistry Research, 2011, 50, 12872-12880.	1.8	7
129	Modelling of the Riser Reactor in a Resid Fluidised-bed Catalytic Cracking Unit Using a Multigrain Model for an Active Matrix-zeolite Catalyst. Indian Chemical Engineer, 2015, 57, 115-135.	0.9	7
130	Applications of Genetic Algorithms in Chemical Engineering II: Case Studies. , 2014, , 61-87.		7
131	Modelling of condensation polymerization of novolac-type phenol–formaldehyde in homogeneous, continuous-flow, stirred-tank reactors. Journal of Applied Polymer Science, 1982, 27, 3393-3405.	1.3	6
132	Simulation of non-vaporizing tubular nylon-6 reactors with radial gradients: finite-difference computations. Polymer, 1989, 30, 1918-1930.	1.8	6
133	Kinetic Modeling and Reactor Simulation and Optimization of Industrially Important Polymerization Processes: a Perspective. International Journal of Chemical Reactor Engineering, 2011, 9, .	0.6	6
134	Condensation polymerisations with unequal reactivity in segregated continuous-flow stirred tank reactors. British Polymer Journal, 1981, 13, 76-81.	0.7	5
135	Simulation of cyclics and degradation product formation in polyethylene terephthalate reactors. Polymer, 1983, 24, 449-456.	1.8	5
136	Comments on "Simplified analysis of the performance of wiped-film polycondensation reactors". Industrial & Engineering Chemistry Fundamentals, 1983, 22, 268-268.	0.7	5
137	Parameter Estimation for Solution Polymerization of Methylmethacrylate. Journal of Polymer Engineering, 1993, 12, .	0.6	5
138	Viscoelastic behavior of polymerizing systems. Rheologica Acta, 1999, 38, 84-89.	1.1	5
139	A multigrain catalyst model for unifunctional multicomponent catalysts. Chemical Engineering Research and Design, 2010, 88, 455-464.	2.7	5
140	Multifunctional step growth polymerizations in cascades of isothermal, continuous flow, stirred tank reactors. Polymer Engineering and Science, 1985, 25, 332-338.	1.5	4
141	Forced oscillations in continuous flow stirred tank reactors with nonlinear step growth polymerization. Journal of Applied Polymer Science, 1985, 30, 557-569.	1.3	4
142	Modeling of melamine formaldehyde polymerization. II. Development of a simpler model. Journal of Applied Polymer Science, 1986, 31, 2805-2827.	1.3	4
143	Vapor grown carbon fibers: Modeling of filament length distributions. Journal of Analytical and Applied Pyrolysis, 1994, 28, 255-270.	2.6	4
144	Modeling of poly(amic acid) and polyimide reactors. Journal of Applied Polymer Science, 1997, 66, 2059-2079.	1.3	4

SANTOSH K GUPTA

#	Article	IF	CITATIONS
145	Some practical aspects of designing a laboratory scale batch polymerization reactor without gas entrapment and interfaced with virtual instrumentation. ISA Transactions, 2006, 45, 259-269.	3.1	4
146	Multi-Objective Genetic Algorithm and Simulated Annealing with the Jumping Gene Adaptations. Advances in Process Systems Engineering, 2008, , 91-129.	0.3	4
147	Optimization of an industrial semibatch nylon 6 reactor. Journal of Applied Polymer Science, 1995, 57, 209-218.	1.3	3
148	Simulation of poly(phenylene oxide) reactors. Polymer, 1996, 37, 1243-1256.	1.8	3
149	Multi-objective optimization of venturi scrubbers using a three-dimensional model for collection efficiency. Journal of Chemical Technology and Biotechnology, 2003, 78, 308-313.	1.6	3
150	Viscosity of moderately concentrated solutions of polymethylâ€methacrylate in methylâ€methacrylate. Journal of Applied Polymer Science, 2008, 109, 2139-2144.	1.3	3
151	Incipient stable bubble formation during bulk polymerization of methyl methacrylate under nearâ€isothermal conditions. II. Use of an anchor agitator. Polymer Engineering and Science, 2009, 49, 2309-2314.	1.5	3
152	Fluid phase behavior of ethylene glycol+water mixtures (at operating conditions of the first-stage) Tj ETQq0 0 0 method. Journal of Molecular Liquids, 2014, 199, 565-571.) rgBT /Ove 2.3	rlock 10 Tf 50 3
153	Polyester Reactors. The Plenum Chemical Engineering Series, 1987, , 241-318.	0.1	3
154	Effect of shear rate on the rate of polymerization of styrene. Polymer, 1983, 24, 443-448.	1.8	2
155	NYLON 6 POLYMERIZATION IN TUBULAR REACTORS: ORTHOGONAL COLLOCATION RESULTS. Journal of Polymer Engineering, 1990, 9, .	0.6	2
156	Modeling of poly(phenylene oxide) reactors. Journal of Applied Polymer Science, 1995, 58, 1877-1890.	1.3	2
157	Dynamic optimization of an industrial semi-batch nylon 6 reactor with end point constraints and stopping conditions. Journal of Applied Polymer Science, 1996, 62, 1219-1230.	1.3	2
158	Optimization of the First Stage Continuous Reactor-Sequence in Polyester Manufacture From Purified Perephthalic Acid. Journal of Polymer Engineering, 2000, 20, .	0.6	2
159	Incipient bubble formation during bulk polymerization of methyl methacrylate under nearâ€isothermal conditions using a ribbon agitator. Polymer Engineering and Science, 2009, 49, 930-936.	1.5	2
160	Optimization of styrene acrylonitrile random bulk copolymerization reactors. Polymer Engineering and Science, 2015, 55, 2377-2387.	1.5	2
161	Nylon Reactors. The Plenum Chemical Engineering Series, 1987, , 187-239.	0.1	2
162	Applications of Genetic Algorithms in Chemical Engineering I: Methodology. , 2014, , 39-59.		2

Applications of Genetic Algorithms in Chemical Engineering I: Methodology. , 2014, , 39-59. 162

#	Article	IF	CITATIONS
163	Effect of intramolecular reactions in multifunctional step growth polymerizations in cascades of continuous-flow, stirred-tank reactors. Polymer Engineering and Science, 1986, 26, 1314-1322.	1.5	1
164	Polymerization with Formaldehyde. The Plenum Chemical Engineering Series, 1987, , 387-425.	0.1	1
165	Semianalytical solution of isothermal nylon-6 polymerization in batch reactors. Polymer Engineering and Science, 1995, 35, 1231-1240.	1.5	1
166	Study of parametric sensitivity in an autothermal nylon 6 reactor. Journal of Applied Polymer Science, 1999, 73, 333-343.	1.3	1
167	Modeling the continuous entrapment and growth of gas bubbles during bulk polymerization of methyl methacrylate. Polymer Engineering and Science, 2011, 51, 1942-1956.	1.5	1
168	Multi-objective Optimization: Bio-mimetic Adaptations of Genetic Algorithm. Indian Chemical Engineer, 2012, 54, 1-11.	0.9	1
169	Modeling of diffusional limitations in styrene acrylonitrile random bulk copolymerization. Polymer Engineering and Science, 2015, 55, 2098-2110.	1.5	1
170	Multi-Objective Genetic Algorithm and Simulated Annealing with the Jumping Gene Adaptations. Advances in Process Systems Engineering, 2017, , 93-133.	0.3	1
171	Seventeen-lump model for the simulation of an industrial fluid catalytic cracking unit (FCCU). Sadhana - Academy Proceedings in Engineering Sciences, 2017, 42, 1965-1978.	0.8	1
172	Mass Transfer in Step Growth Polymerization. The Plenum Chemical Engineering Series, 1987, , 129-165.	0.1	1
173	Nonlinear Step Growth Polymerization. The Plenum Chemical Engineering Series, 1987, , 93-128.	0.1	1
174	Linear Step Growth Polymerization Following the Equal Reactivity Hypothesis. The Plenum Chemical Engineering Series, 1987, , 19-62.	0.1	0
175	Irreversible step growth polymerization having segmental diffusion limitations in HCSTRs—simulation and steady state multiplicity. Journal of Applied Polymer Science, 1989, 38, 979-995.	1.3	0
176	A computationally efficient technique for the solution of non-isothermal nylon-6 polymerization in batch reactors. Macromolecular Theory and Simulations, 1995, 4, 821-838.	0.6	0
177	Step Growth Polymerization: a Personal Journey. , 2010, , .		0
178	Preface: Special issue dedicated to the International Conference "Advances in Chemical Engineering-2020 (AdChE-2020)―UPES, Dehradun, India. International Journal of Chemical Reactor Engineering, 2021, 19, 653-654.	0.6	0
179	Optimal Control of Step Growth Polymerizations. The Plenum Chemical Engineering Series, 1987, , 167-185.	0.1	0