Noriyuki Hatsugai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5128252/publications.pdf

Version: 2024-02-01

331670 454955 3,108 31 21 30 citations h-index g-index papers 31 31 31 3760 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Measurement of the Caspase-1-Like Activity of Vacuolar Processing Enzyme in Plants. Methods in Molecular Biology, 2018, 1743, 163-171.	0.9	3
2	WRKY70 prevents axenic activation of plant immunity by direct repression of <i>SARD1</i> . New Phytologist, 2018, 217, 700-712.	7.3	60
3	Involvement of Adapter Protein Complex 4 in Hypersensitive Cell Death Induced by Avirulent Bacteria. Plant Physiology, 2018, 176, 1824-1834.	4.8	25
4	How do Plants Keep their Functional Integrity?. Plant Signaling and Behavior, 2018, 13, 1-31.	2.4	4
5	Quantification of Plant Cell Death by Electrolyte Leakage Assay. Bio-protocol, 2018, 8, e2758.	0.4	50
6	Nup82 functions redundantly with Nup136 in a salicylic acid-dependent defense response of Arabidopsis thaliana. Nucleus, 2017, 8, 301-311.	2.2	16
7	Vacuolar convolution: possible mechanisms and role of phosphatidylinositol 3,5-bisphosphate. Functional Plant Biology, 2017, 44, 751.	2.1	4
8	A plant effectorâ€triggered immunity signaling sector is inhibited by patternâ€triggered immunity. EMBO Journal, 2017, 36, 2758-2769.	7.8	69
9	Hexose Oxidase-Mediated Hydrogen Peroxide as a Mechanism for the Antibacterial Activity in the Red Seaweed Ptilophora subcostata. PLoS ONE, 2016, 11, e0149084.	2.5	11
10	The $\hat{l}\frac{1}{4}$ Subunit of <i>Arabidopsis</i> Adaptor Protein-2 Is Involved in Effector-Triggered Immunity Mediated by Membrane-Localized Resistance Proteins. Molecular Plant-Microbe Interactions, 2016, 29, 345-351.	2.6	24
11	Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in <i>Arabidopsis thaliana</i> Plant Cell, 2016, 28, 537-556.	6.6	144
12	Vacuolar processing enzyme in plant programmed cell death. Frontiers in Plant Science, 2015, 6, 234.	3.6	182
13	The receptorâ€like cytoplasmic kinase <scp>PCRK</scp> 1 contributes to patternâ€triggered immunity against <i>Pseudomonas syringae</i> in <i>Arabidopsis thaliana</i> New Phytologist, 2015, 207, 78-90.	7.3	50
14	Putative Serine Protease Effectors of <i>Clavibacter michiganensis</i> Induce a Hypersensitive Response in the Apoplast of <i>Nicotiana</i> Species. Molecular Plant-Microbe Interactions, 2015, 28, 1216-1226.	2.6	32
15	BEACH-Domain Proteins Act Together in a Cascade to Mediate Vacuolar Protein Trafficking and Disease Resistance in Arabidopsis. Molecular Plant, 2015, 8, 389-398.	8.3	27
16	Identification and Dynamics of <i>Arabidopsis</i> Adaptor Protein-2 Complex and Its Involvement in Floral Organ Development. Plant Cell, 2013, 25, 2958-2969.	6.6	121
17	A phytotoxin Solanapyrone-A downregulates calcium-dependent protein kinase activity in potato. Genetics and Molecular Research, 2013, 12, 1540-1545.	0.2	4
18	Changes in Cytosolic ATP Levels and Intracellular Morphology during Bacteria-Induced Hypersensitive Cell Death as Revealed by Real-Time Fluorescence Microscopy Imaging. Plant and Cell Physiology, 2012, 53, 1768-1775.	3.1	29

#	Article	IF	Citations
19	Luminescent proteins for high-speed single-cell and whole-body imaging. Nature Communications, 2012, 3, 1262.	12.8	247
20	Alternaric acid stimulates phosphorylation of His-tagged RiCDPK2, a calcium-dependent protein kinase in potato plants. Genetics and Molecular Research, 2012, 11, 2381-2389.	0.2	7
21	The role of vacuole in plant cell death. Cell Death and Differentiation, 2011, 18, 1298-1304.	11.2	223
22	æ ç ‰ ©ã®ç´°èfžæ»ã,'å¸ã,‹é³ä¼å•å 5 å½ ©ã³ãf‡ã,¹ãf—ãfãf†ã,¢ãf¼ã,¼ã®å½¹å‰²ã,'探ã,‹. Kagaku To Seibut:	su, 2.0 10, 4	18,0734-736.
23	Auto-Luminescent Genetically-Encoded Ratiometric Indicator for Real-Time Ca2+ Imaging at the Single Cell Level. PLoS ONE, 2010, 5, e9935.	2.5	53
24	Two vacuole-mediated defense strategies in plants. Plant Signaling and Behavior, 2010, 5, 1568-1570.	2.4	50
25	A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes and Development, 2009, 23, 2496-2506.	5.9	244
26	Constitutive and Inducible ER Bodies of Arabidopsis thaliana Accumulate Distinct \hat{I}^2 -Glucosidases. Plant and Cell Physiology, 2009, 50, 480-488.	3.1	68
27	An Asparaginyl Endopeptidase Mediates in Vivo Protein Backbone Cyclization. Journal of Biological Chemistry, 2007, 282, 29721-29728.	3.4	207
28	A cellular suicide strategy of plants: vacuole-mediated cell death. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 905-911.	4.9	156
29	Vacuolar processing enzyme: an executor of plant cell death. Current Opinion in Plant Biology, 2005, 8, 404-408.	7.1	223
30	Vacuolar Processing Enzyme Is Essential for Mycotoxin-induced Cell Death in Arabidopsis thaliana. Journal of Biological Chemistry, 2005, 280, 32914-32920.	3.4	196
31	A Plant Vacuolar Protease, VPE, Mediates Virus-Induced Hypersensitive Cell Death. Science, 2004, 305, 855-858.	12.6	579