
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5128215/publications.pdf Version: 2024-02-01

FVA SZECEZDI

#	Article	IF	CITATIONS
1	CD38 knockout natural killer cells expressing an affinity optimized CD38 chimeric antigen receptor successfully target acute myeloid leukemia with reduced effector cell fratricide. Haematologica, 2022, 107, 437-445.	3.5	63
2	Macromolecular crowding in the development of a three-dimensional organotypic human breast cancer model. Biomaterials, 2022, 287, 121642.	11.4	3
3	Hematopoietic versus leukemic stem cell quiescence: Challenges and therapeutic opportunities. Blood Reviews, 2021, 50, 100850.	5.7	40
4	Recreating the Bone Marrow Microenvironment to Model Leukemic Stem Cell Quiescence. Frontiers in Cell and Developmental Biology, 2021, 9, 662868.	3.7	5
5	Single Cell Transcriptomics Revealed Molecular Alterations in AML Cell Clusters Relevant to Refractory Disease at Relapse. Blood, 2021, 138, 3316-3316.	1.4	0
6	Editorial: Death Receptors, Non-apoptotic Signaling Pathways and Inflammation. Frontiers in Immunology, 2020, 11, 2162.	4.8	2
7	Aspartic Aminopeptidase Is a Novel Biomarker of Aggressive Chronic Lymphocytic Leukemia. Cancers, 2020, 12, 1876.	3.7	3
8	Theranostic drug test incorporating the boneâ€marrow microenvironment can predict the clinical response of acute myeloid leukaemia to chemotherapy. British Journal of Haematology, 2020, 189, e254-e258.	2.5	4
9	Involvement of planned cell death of necroptosis in cancer treatment by nanomaterials: Recent advances and future perspectives. Journal of Controlled Release, 2019, 299, 121-137.	9.9	47
10	Repression of Mcl-1 expression by the CDC7/CDK9 inhibitor PHA-767491 overcomes bone marrow stroma-mediated drug resistance in AML. Scientific Reports, 2018, 8, 15752.	3.3	26
11	Ex Vivo Co-Culture of AML Blasts and Bone Marrow Mesenchymal Stromal Cells to Accurately Predict the Clinical Efficacy of Cytarabine-Daunorubicin Treatment. Blood, 2018, 132, 2636-2636.	1.4	0
12	N-glycosylation of mouse TRAIL-R and human TRAIL-R1 enhances TRAIL-induced death. Cell Death and Differentiation, 2017, 24, 500-510.	11.2	75
13	TRAIL receptor gene editing unveils TRAIL-R1 as a master player of apoptosis induced by TRAIL and ER stress. Oncotarget, 2017, 8, 9974-9985.	1.8	68
14	Generation of Tumour-stroma Minispheroids for Drug Efficacy Testing. Bio-protocol, 2017, 7, e2091.	0.4	0
15	The Janus Face of Death Receptor Signaling during Tumor Immunoediting. Frontiers in Immunology, 2016, 7, 446.	4.8	42
16	Three-dimensional ex vivo co-culture models of the leukaemic bone marrow niche for functional drug testing. Drug Discovery Today, 2016, 21, 1464-1471.	6.4	19
17	The pyrrolo-1,5-benzoxazepine, PBOX-15, enhances TRAIL-induced apoptosis by upregulation of DR5 and downregulation of core cell survival proteins in acute lymphoblastic leukaemia cells. International Journal of Oncology, 2016, 49, 74-88.	3.3	22
18	Guiding the Killer and Bringing in Accomplices: Bispecific Antibody Treatment for Malignant Melanoma. Journal of Investigative Dermatology, 2016, 136, 362-364.	0.7	5

#	Article	IF	CITATIONS
19	Recreating complex pathophysiologies in vitro with extracellular matrix surrogates for anticancer therapeutics screening. Drug Discovery Today, 2016, 21, 1521-1531.	6.4	28
20	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
21	Decoy receptors block TRAIL sensitivity at a supracellular level: the role of stromal cells in controlling tumour TRAIL sensitivity. Oncogene, 2016, 35, 1261-1270.	5.9	54
22	Decorated Macrocycles via Ring-Closing Double-Reductive Amination. Identification of an Apoptosis Inducer of Leukemic Cells That at Least Partially Antagonizes a 5-HT2 Receptor. Organic Letters, 2015, 17, 1672-1675.	4.6	21
23	BCL-2 modulates the unfolded protein response by enhancing splicing of X-box binding protein-1. Biochemical and Biophysical Research Communications, 2015, 466, 40-45.	2.1	10
24	An added dimension to tumour TRAIL sensitivity. Oncoscience, 2015, 2, 906-907.	2.2	4
25	Correlation between Potassium Channel Expression and Sensitivity to Drug-induced Cell Death in Tumor Cell Lines. Current Pharmaceutical Design, 2014, 20, 189-200.	1.9	65
26	The BH3-mimetic ABT-737 effectively kills acute myeloid leukemia initiating cells. Leukemia Research Reports, 2014, 3, 79-82.	0.4	15
27	Co-acting gene networks predict TRAIL responsiveness of tumour cells with high accuracy. BMC Genomics, 2014, 15, 1144.	2.8	3
28	Structural determinants of DISC function: New insights into death receptor-mediated apoptosis signalling. , 2013, 140, 186-199.		93
29	Resistance to TRAIL in non-transformed cells is due to multiple redundant pathways. Cell Death and Disease, 2013, 4, e702-e702.	6.3	66
30	Kinetics in Signal Transduction Pathways Involving Promiscuous Oligomerizing Receptors Can Be Determined by Receptor Specificity: Apoptosis Induction by TRAIL. Molecular and Cellular Proteomics, 2012, 11, M111.013730.	3.8	25
31	NOXA contributes to the sensitivity of PERKâ€deficient cells to ER stress. FEBS Letters, 2012, 586, 4023-4030.	2.8	28
32	An Unfractionated Fucoidan from <i>Ascophyllum nodosum</i> : Extraction, Characterization, and Apoptotic Effects in Vitro. Journal of Natural Products, 2011, 74, 1851-1861.	3.0	121
33	Targeting Trail Towards the Clinic. Current Drug Targets, 2011, 12, 2079-2090.	2.1	21
34	Targeting AML through DR4 with a novel variant of rhTRAIL. Journal of Cellular and Molecular Medicine, 2011, 15, 2216-2231.	3.6	18
35	The Proteasome Inhibitor Bortezomib Sensitizes AML with Myelomonocytic Differentiation to TRAIL Mediated Apoptosis. Cancers, 2011, 3, 1329-1350.	3.7	14
36	Synthetic constrained peptide selectively binds and antagonizes death receptor 5. FEBS Journal, 2010, 277, 1653-1665.	4.7	19

#	Article	IF	CITATIONS
37	Early growth response-1 is a regulator of DR5-induced apoptosis in colon cancer cells. British Journal of Cancer, 2010, 102, 754-764.	6.4	34
38	Mechanisms of ER Stress-Mediated Mitochondrial Membrane Permeabilization. International Journal of Cell Biology, 2010, 2010, 1-9.	2.5	67
39	Rapid and efficient cancer cell killing mediated by high-affinity death receptor homotrimerizing TRAIL variants. Cell Death and Disease, 2010, 1, e83-e83.	6.3	63
40	The BH3 Mimetic, ABT-737, Overcomes Stromal-Mediated Pro-Survival Signals and Synergizes with PHA-767491, a Dual Cdc7/CDK9 Inhibitor, In Acute Myeloid Leukaemia. Blood, 2010, 116, 1841-1841.	1.4	1
41	G2/M Arrest Sensitizes Chronic Myelogenous Leukemia Cells to TRAIL-Induced Apoptosis. Blood, 2010, 116, 4465-4465.	1.4	1
42	Differential activation of JNK1 isoforms by TRAIL receptors modulate apoptosis of colon cancer cell lines. British Journal of Cancer, 2009, 100, 1415-1424.	6.4	35
43	Bcl-2 family on guard at the ER. American Journal of Physiology - Cell Physiology, 2009, 296, C941-C953.	4.6	222
44	Stem cells are resistant to TRAIL receptorâ€mediated apoptosis. Journal of Cellular and Molecular Medicine, 2009, 13, 4409-4414.	3.6	44
45	The mitochondrial death pathway: a promising therapeutic target in diseases. Journal of Cellular and Molecular Medicine, 2009, 13, 1004-1033.	3.6	211
46	Is There a Role for Nuclear Factor κB in Tumor Necrosis Factorâ€Related Apoptosisâ€Inducing Ligand Resistance?. Annals of the New York Academy of Sciences, 2009, 1171, 38-49.	3.8	19
47	TRAIL receptor signalling and modulation: Are we on the right TRAIL?. Cancer Treatment Reviews, 2009, 35, 280-288.	7.7	248
48	Enhancement of Antitumor Properties of rhTRAIL by Affinity Increase toward Its Death Receptorsâ€. Biochemistry, 2009, 48, 2180-2191.	2.5	29
49	Retinoid receptorâ€activating ligands are produced within the mouse thymus during postnatal development. European Journal of Immunology, 2008, 38, 147-155.	2.9	28
50	Metabolic Flexibility Permits Mesenchymal Stem Cell Survival in an Ischemic Environment. Stem Cells, 2008, 26, 1325-1336.	3.2	165
51	Cytokineâ€induced βâ€cell apoptosis is NOâ€dependent, mitochondriaâ€mediated and inhibited by BCLâ€X _L . Journal of Cellular and Molecular Medicine, 2008, 12, 591-606.	3.6	56
52	Nerve growth factor blocks thapsigarginâ€induced apoptosis at the level of the mitochondrion <i>via</i> regulation of Bim. Journal of Cellular and Molecular Medicine, 2008, 12, 2482-2496.	3.6	38
53	DR4-selective Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) Variants Obtained by Structure-based Design. Journal of Biological Chemistry, 2008, 283, 20560-20568.	3.4	56
54	Distinct mechanisms of cardiomyocyte apoptosis induced by doxorubicin and hypoxia converge on mitochondria and are inhibited by Bclâ€xL. Journal of Cellular and Molecular Medicine, 2007, 11, 509-520.	3.6	78

#	Article	IF	CITATIONS
55	Identification of an inhibitor of caspase activation from heart extracts; ATP blocks apoptosome formation. Apoptosis: an International Journal on Programmed Cell Death, 2007, 12, 465-474.	4.9	14
56	ER stress contributes to ischemia-induced cardiomyocyte apoptosis. Biochemical and Biophysical Research Communications, 2006, 349, 1406-1411.	2.1	185
57	Mediators of endoplasmic reticulum stressâ€induced apoptosis. EMBO Reports, 2006, 7, 880-885.	4.5	2,033
58	Dexamethasone inhibits apoptosis in C6 glioma cells through increased expression of Bcl-XL. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11, 1247-1255.	4.9	29
59	Designed tumor necrosis factor-related apoptosis-inducing ligand variants initiating apoptosis exclusively via the DR5 receptor. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8634-8639.	7.1	151
60	TRAIL sensitisation by arsenic trioxide is caspase-8 dependent and involves modulation of death receptor components and Akt. British Journal of Cancer, 2006, 94, 398-406.	6.4	31
61	Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells. Biochemical and Biophysical Research Communications, 2005, 327, 801-810.	2.1	89
62	CD95-mediated alteration in Hsp70 levels is dependent on protein stabilization. Cell Stress and Chaperones, 2005, 10, 59.	2.9	10
63	Caspase-12 and ER-Stress-Mediated Apoptosis. Annals of the New York Academy of Sciences, 2003, 1010, 186-194.	3.8	427
64	Hypoxia and Ischemia Induce Nuclear Condensation and Caspase Activation in Cardiomyocytes. Annals of the New York Academy of Sciences, 2003, 1010, 728-732.	3.8	10
65	Transglutaminase 2 ^{-/-} mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7812-7817.	7.1	249
66	Ligation of Retinoic Acid Receptor α Regulates Negative Selection of Thymocytes by Inhibiting Both DNA Binding of <i>nur77</i> and Synthesis of Bim. Journal of Immunology, 2003, 170, 3577-3584.	0.8	30
67	Activation-induced apoptosis and cell surface expression of Fas (CD95) ligand are reciprocally regulated by retinoic acid receptor \hat{I}_{\pm} and \hat{I}^3 and involve nur77 in T cells. European Journal of Immunology, 2001, 31, 1382-1391.	2.9	30
68	Cell Death in HIV Pathogenesis and Its Modulation by Retinoids. Annals of the New York Academy of Sciences, 2001, 946, 95-107.	3.8	4
69	Apoptosis-linked in vivo regulation of the tissue transglutaminase gene promoter. Cell Death and Differentiation, 2000, 7, 1225-1233.	11.2	38
70	Regulation of cell surface expression of Fas (CD95) ligand and susceptibility to Fas (CD95)-mediated apoptosis in activation-induced T cell death involves calcineurin and protein kinase C, respectively. European Journal of Immunology, 1999, 29, 383-393.	2.9	29
71	Regulation of cell surface expression of Fas (CD95) ligand and susceptibility to Fas (CD95)-mediated apoptosis in activation-induced T cell death involves calcineurin and protein kinase C, respectively. European Journal of Immunology, 1999, 29, 383-393.	2.9	1