Eric Garfunkel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5128199/publications.pdf

Version: 2024-02-01

33 papers

2,412 citations

³⁹⁴⁴²¹ 19 h-index 30 g-index

33 all docs 33 docs citations

33 times ranked 4194 citing authors

#	Article	IF	CITATIONS
1	Lowâ€Loss Tunable Infrared Plasmons in the Highâ€Mobility Perovskite (Ba,La)SnO ₃ . Small, 2022, 18, e2106897.	10.0	3
2	Creating Functional Oxynitride–Silicon Interfaces and SrNbO ₂ N Thin Films for Photoelectrochemical Applications. Journal of Physical Chemistry C, 2022, 126, 5970-5979.	3.1	1
3	Two-Dimensional Copper Iodide-Based Inorganic–Organic Hybrid Semiconductors: Synthesis, Structures, and Optical and Transport Properties. Chemistry of Materials, 2021, 33, 5317-5325.	6.7	26
4	A new planar defect in SiGe nanopillars. Microscopy and Microanalysis, 2021, 27, 1948-1949.	0.4	0
5	Quantify doping efficiency at the nanoscale using monochromated STEM-EELS. Microscopy and Microanalysis, 2021, 27, 310-311.	0.4	O
6	CO2 electro-reduction on Cu3P: Role of Cu(I) oxidation state and surface facet structure in C1-formate production and H2 selectivity. Electrochimica Acta, 2021, 391, 138889.	5.2	27
7	Enhancing interfacial charge transfer in a WO ₃ /BiVO ₄ photoanode heterojunction through gallium and tungsten co-doping and a sulfur modified Bi ₂ O ₃ interfacial layer. Journal of Materials Chemistry A, 2021, 9, 16137-16149.	10.3	22
8	Highly efficient and durable III–V semiconductor-catalyst photocathodes <i>via</i> a transparent protection layer. Sustainable Energy and Fuels, 2020, 4, 1437-1442.	4.9	9
9	Microwave-Enabled Incorporation of Single Atomic Cu Catalytic Sites in Holey Graphene: Unifying Structural Requirements of a Carbon Matrix for Simultaneous Achievement of High Activity and Long-Term Durability. ACS Applied Energy Materials, 2020, 3, 8266-8275.	5.1	9
10	Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nature Energy, 2020, 5, 386-397.	39.5	621
11	Creating stable interfaces between reactive materials: titanium nitride protects photoabsorber–catalyst interface in water-splitting photocathodes. Journal of Materials Chemistry A, 2019, 7, 2400-2411.	10.3	25
12	Graphene oxide catalyzed ketone α-alkylation with alkenes: enhancement of graphene oxide activity by hydrogen bonding. Chemical Communications, 2019, 55, 5379-5382.	4.1	17
13	Climbing the Volcano of Electrocatalytic Activity while Avoiding Catalyst Corrosion: Ni ₃ P, a Hydrogen Evolution Electrocatalyst Stable in Both Acid and Alkali. ACS Catalysis, 2018, 8, 4408-4419.	11.2	178
14	Effect of nitrogen passivation on interface composition and physical stress in SiO2/SiC(4H) structures. Applied Physics Letters, 2018, 113, .	3. 3	12
15	Selective CO ₂ reduction to C ₃ and C ₄ oxyhydrocarbons on nickel phosphides at overpotentials as low as 10 mV. Energy and Environmental Science, 2018, 11, 2550-2559.	30.8	165
16	Nanoscale Internal Fields in a Biased Graphene–Insulator–Semiconductor Structure. Journal of Physical Chemistry Letters, 2016, 7, 3434-3439.	4.6	5
17	P-Doped Porous Carbon as Metal Free Catalysts for Selective Aerobic Oxidation with an Unexpected Mechanism. ACS Nano, 2016, 10, 2305-2315.	14.6	276
18	Coordination Geometry and Oxidation State Requirements of Corner-Sharing MnO ₆ Octahedra for Water Oxidation Catalysis: An Investigation of Manganite (γ-MnOOH). ACS Catalysis, 2016, 6, 2089-2099.	11.2	156

#	Article	IF	CITATIONS
19	Graphene: Microwave Enabled One-Pot, One-Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications (Small 27/2015). Small, 2015, 11, 3357-3357.	10.0	1
20	Microwave Enabled Oneâ€Pot, Oneâ€Step Fabrication and Nitrogen Doping of Holey Graphene Oxide for Catalytic Applications. Small, 2015, 11, 3358-3368.	10.0	106
21	Graphene-Catalyzed Direct Friedel–Crafts Alkylation Reactions: Mechanism, Selectivity, and Synthetic Utility. Journal of the American Chemical Society, 2015, 137, 14473-14480.	13.7	147
22	Synergy of oxygen and a piranha solution for eco-friendly production of highly conductive graphene dispersions. Green Chemistry, 2015, 17, 869-881.	9.0	27
23	Oxygen Incorporation in Rubrene Single Crystals. Scientific Reports, 2014, 4, 4753.	3.3	34
24	Variability in Bioreactivity Linked to Changes in Size and Zeta Potential of Diesel Exhaust Particles in Human Immune Cells. PLoS ONE, 2014, 9, e97304.	2.5	12
25	Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector. Applied Physics Letters, 2012, 101, .	3.3	72
26	Effects of Mg on the electrical characteristics and thermal stability of MgxZn1 \hat{a} °xO thin film transistors. Applied Physics Letters, 2011, 98, .	3.3	103
27	Reduction of native oxides on GaAs during atomic layer growth of Al2O3. Applied Physics Letters, 2009, 94, .	3.3	67
28	Doping of Conjugated Polythiophenes with Alkyl Silanes. Advanced Functional Materials, 2009, 19, 1906-1911.	14.9	107
29	GeOx interface layer reduction upon Al-gate deposition on a HfO2â^•GeOxâ^•Ge(001) stack. Applied Physics Letters, 2008, 92, 172906.	3.3	17
30	Photoinduced charge transfer between poly(3-hexylthiophene) and germanium nanowires. Applied Physics Letters, 2007, 91, 183501.	3.3	30
31	Lanthanum silicate gate dielectric stacks with subnanometer equivalent oxide thickness utilizing an interfacial silica consumption reaction. Journal of Applied Physics, 2005, 98, 024314.	2.5	69
32	Growth of ultrathin crystalline Al2O3 films on Ru(0001) and Re(0001) surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1996, 14, 2554-2563.	2.1	54
33	A mixed Cu–Ni bridge site for CO adsorption. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1989, 7, 1579-1584.	2.1	14