
Dahai Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5128137/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Constant-Pressure Hydraulic PTO System for a Wave Energy Converter Based on a Hydraulic Transformer and Multi-Chamber Cylinder. Energies, 2022, 15, 241.	3.1	2
2	Visible Fidelity Collector of a Zooplankton Sample from the Near-Bottom of the Deep Sea. Journal of Marine Science and Engineering, 2021, 9, 332.	2.6	1
3	A review of tidal current energy resource assessment in China. Renewable and Sustainable Energy Reviews, 2021, 145, 111012.	16.4	38
4	Power absorption modelling and analysis of a multiâ€axis wave energy converter. IET Renewable Power Generation, 2021, 15, 3368-3384.	3.1	1
5	Comparative Investigations of Tidal Current Velocity Prediction Considering Effect of Multi-Layer Current Velocity. Energies, 2020, 13, 6417.	3.1	4
6	Flow field impact assessment of a tidal farm in the Putuo-Hulu Channel. Ocean Engineering, 2020, 208, 107359.	4.3	13
7	IoTâ€based approach to condition monitoring of the wave power generation system. IET Renewable Power Generation, 2019, 13, 2207-2214.	3.1	8
8	Review on configuration and control methods of tidal current turbines. Renewable and Sustainable Energy Reviews, 2019, 108, 125-139.	16.4	64
9	A condition monitoring method of wind turbines based on Long Short-Term Memory neural network. , 2019, , .		3
10	A novel wind turbine condition monitoring method based on cloud computing. Renewable Energy, 2019, 135, 390-398.	8.9	56
11	Data-Driven Condition Monitoring Approaches to Improving Power Output of Wind Turbines. IEEE Transactions on Industrial Electronics, 2019, 66, 6012-6020.	7.9	43
12	Feasibility analysis and trial of air-lift artificial upwelling powered by hybrid energy system. Ocean Engineering, 2017, 129, 520-528.	4.3	11
13	Effect of Doubly Fed Induction GeneratorTidal Current Turbines on Stability of a Distribution Grid under Unbalanced Voltage Conditions. Energies, 2017, 10, 212.	3.1	5
14	Estimating Health Condition of the Wind Turbine Drivetrain System. Energies, 2017, 10, 1583.	3.1	15
15	Experimental study on the performance of a wave pump for artificial upwelling. Ocean Engineering, 2016, 113, 191-200.	4.3	16
16	Reviews of power supply and environmental energy conversions for artificial upwelling. Renewable and Sustainable Energy Reviews, 2016, 56, 659-668.	16.4	14
17	Fault Ride-Through Analysis and Protection of a 2-MW DFIG Tidal Current Turbine. Marine Technology Society Journal, 2015, 49, 49-57.	0.4	1
18	Wave tank experiments on the power capture of a multi-axis wave energy converter. Journal of Marine Science and Technology, 2015, 20, 520-529.	2.9	22

#	Article	IF	CITATIONS
19	Improved control of individual blade pitch for wind turbines. Sensors and Actuators A: Physical, 2013, 198, 8-14.	4.1	27