Alfio D Grasso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5128018/publications.pdf

Version: 2024-02-01

99 papers 2,013 citations

236925 25 h-index 42 g-index

99 all docs 99 docs citations 99 times ranked 952 citing authors

#	Article	IF	CITATIONS
1	A Methodology to Derive a Symbolic Transfer Function for Multistage Amplifiers. IEEE Access, 2022, 10, 14062-14075.	4.2	9
2	Single miller capacitor frequency compensation techniques: Theoretical comparison and critical review. International Journal of Circuit Theory and Applications, 2022, 50, 1462-1486.	2.0	6
3	Two-Stage OTA With All Subthreshold MOSFETs and Optimum GBW to DC-Current Ratio. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 3154-3158.	3.0	5
4	A 28 nm Bulk CMOS Fully Digital BPSK Demodulator for US-Powered IMDs Downlink Communications. Electronics (Switzerland), 2022, 11, 698.	3.1	5
5	Double-Differential Amplifier for sEMG Measurement by Means of a Current-Mode Approach. IEEE Access, 2022, 10, 45870-45880.	4.2	1
6	The Dickson Charge Pump as a Signal Amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69, 3476-3489.	5.4	5
7	A Bulk Current Regulation Technique for Dual-Branch Cross-Coupled Charge Pumps. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 4128-4132.	3.0	6
8	Frequency Compensation of Three-Stage OTAs to Achieve Very Wide Capacitive Load Range. IEEE Access, 2022, 10, 70675-70687.	4.2	7
9	Planar Capacitive Transducers for a Miniaturized Particulate Matter Detector. , 2022, , .		О
10	A 0.63 pJ/bit Fully-Digital BPSK Demodulator for US-powered IMDs downlink in a 28-nm bulk CMOS technology. , 2022, , .		5
11	A Memory-Targeted Dynamic Reconfigurable Charge Pump to Achieve a Power Consumption Reduction in IoT Nodes. IEEE Access, 2021, 9, 41958-41964.	4.2	8
12	Power Efficiency Improvement of a Boost Converter Using a Coupled Inductor with a Fuzzy Logic Controller: Application to a Photovoltaic System. Applied Sciences (Switzerland), 2021, 11, 980.	2.5	8
13	A Review of Power Management Integrated Circuits for Ultrasound-Based Energy Harvesting in Implantable Medical Devices. Applied Sciences (Switzerland), 2021, 11, 2487.	2.5	29
14	A Time-Based Electronic Front-End for a Capacitive Particle Matter Detector. Sensors, 2021, 21, 1840.	3.8	9
15	An Automatic Offset Calibration Method for Differential Charge-Based Capacitance Measurement. Journal of Low Power Electronics and Applications, 2021, 11, 22.	2.0	2
16	Dickson Charge Pump: Design Strategy for Optimum Efficiency. , 2021, , .		2
17	Charge Pumps for Ultra-Low-Power Applications: Analysis, Design, and New Solutions. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 2895-2901.	3.0	24
18	An Efficient AC-DC Converter in 28nm Si-Bulk CMOS Technology for Piezo-Powered Medical Implanted Devices., 2021,,.		5

#	Article	IF	Citations
19	Comparison of the Wide-Frequency Range Dynamic Behavior of the Dickson and Cockcroft-Walton Voltage Multipliers., 2021,,.		1
20	A High-Performance Charge Pump Topology for Very-Low-Voltage Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1304-1308.	3.0	18
21	A simple and effective design strategy to increase power conversion efficiency of linear charge pumps. International Journal of Circuit Theory and Applications, 2020, 48, 157-161.	2.0	23
22	High-Frequency Low-Current Second-Order Bandpass Active Filter Topology and Its Design in 28-nm FD-SOI CMOS. Journal of Low Power Electronics and Applications, 2020, 10, 27.	2.0	8
23	Currentâ€mode bodyâ€biased switch to increase performance of linear charge pumps. International Journal of Circuit Theory and Applications, 2020, 48, 1864-1872.	2.0	16
24	A Compact Temperature Sensor with a Resolution FoM of 1.82 pJ·K2. IEEE Transactions on Instrumentation and Measurement, 2020, , 1 -1.	4.7	2
25	A Subthreshold Cross-Coupled Hybrid Charge Pump for 50-mV Cold-Start. IEEE Access, 2020, 8, 188959-188969.	4.2	31
26	Dickson Voltage Multiplier: Beyond the Switching Limits. , 2020, , .		0
27	Sub-fF Resolution Capacitive Amplifier For Particulate Matter Airborne Detection., 2020,,.		1
28	Sub-Femto-Farad Resolution Electronic Interfaces for Integrated Capacitive Sensors: A Review. IEEE Access, 2020, 8, 153969-153980.	4.2	33
29	Charge Pump Improvement for Energy Harvesting Applications by Node Pre-Charging. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 3312-3316.	3.0	23
30	Regulated Charge Pumps: A Comparative Study by Means of Verilog-AMS. Electronics (Switzerland), 2020, 9, 998.	3.1	26
31	Global impedance attenuation network for multistage OTAs driving a broad range of load capacitor. International Journal of Circuit Theory and Applications, 2020, 48, 181-197.	2.0	5
32	Linear distribution of capacitance in Dickson charge pumps to reduce rise time. International Journal of Circuit Theory and Applications, 2020, 48, 555-566.	2.0	21
33	Description and performance analysis of a flexible photovoltaic/thermal (PV/T) solar system. Renewable Energy, 2019, 137, 144-156.	8.9	41
34	Active load with crossâ€coupled bulk for highâ€gain highâ€CMRR nanometer CMOS differential stages. International Journal of Circuit Theory and Applications, 2019, 47, 1700-1704.	2.0	11
35	A Review of Charge Pump Topologies for the Power Management of IoT Nodes. Electronics (Switzerland), 2019, 8, 480.	3.1	83
36	Optimized Charge Pump With Clock Booster for Reduced Rise Time or Silicon Area. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 1977-1981.	3.0	30

#	Article	IF	Citations
37	CMOS Differential Stage with Improved DC Gain, CMRR and PSRR Performance. , 2019, , .		1
38	Integrated Airborne Particle Matter Detector., 2019,,.		4
39	Autonomous Energy-Efficient Wireless Sensor Network Platform for Home/Office Automation. IEEE Sensors Journal, 2019, 19, 3501-3512.	4.7	74
40	High-Performance Three-Stage Single-Miller CMOS OTA With No Upper Limit of <inline-formula> <tex-math notation="LaTeX"> $\{C\}_{L}$ </tex-math> </inline-formula>. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 1529-1533.	3.0	36
41	Dual Push–Pull High-Speed Rail-to-Rail CMOS Buffer Amplifier for Flat-Panel Displays. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 1879-1883.	3.0	24
42	Ultra-Low Power Amplifiers for IoT Nodes. , 2018, , .		14
43	Three-stage single-miller CMOS OTA driving 10 nF with 1.46-MHz GBW. , 2018, , .		2
44	Switched-Capacitor Power Management Integrated Circuit for Autonomous Internet of Things Node. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 1455-1459.	3.0	20
45	0.9-V Class-AB Miller OTA in 0.35- \$mu ext{m}\$ CMOS With Threshold-Lowered Non-Tailed Differential Pair. IEEE Transactions on Circuits and Systems I: Regular Papers, 2017, 64, 1740-1747.	5.4	48
46	The noise performance of CMOS Miller operational transconductance amplifiers with embedded currentâ€buffer frequency compensation. International Journal of Circuit Theory and Applications, 2017, 45, 457-465.	2.0	7
47	Novel straightforward and effective extraction methodology for SiPM model parameters. , 2017, , .		0
48	Area-optimized sub-fF offset trimming circuit for capacitive MEMS interfaces. , 2017, , .		1
49	A toolbox for the symbolic analysis and simulation of linear analog circuits. , 2017, , .		2
50	CMOS Nonâ€ŧailed differential pair. International Journal of Circuit Theory and Applications, 2016, 44, 1468-1477.	2.0	6
51	Enhanced analytical model and output dynamic response of SiPM-Based electronic read-outs. , 2016, , .		2
52	A 0.003-mm2 50-mW three-stage amplifier driving 10-nF with 2.7-MHz GBW. , 2016, , .		1
53	Optimized Active Single-Miller Capacitor Compensation With Inner Half-Feedforward Stage for Very High-Load Three-Stage OTAs. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 1349-1359.	5.4	54
54	0.7-V Three-Stage Class-AB CMOS Operational Transconductance Amplifier. IEEE Transactions on Circuits and Systems I: Regular Papers, 2016, 63, 1807-1815.	5.4	105

#	Article	IF	CITATIONS
55	Symbolic factorization methodology for multistage amplifier transfer functions. International Journal of Circuit Theory and Applications, 2016, 44, 38-59.	2.0	14
56	Improved single-miller passive compensation network for three-stage CMOS OTAs. Analog Integrated Circuits and Signal Processing, 2016, 86, 417-427.	1.4	16
57	195-nW 120-dB subthreshold CMOS OTA driving up to 200 pF and occupying only 4.4–10â^3 mm2. , 2015, , .		0
58	Single-miller all-passive compensation network for three-stage OTAs. , 2015, , .		1
59	Monitoring of solar cogenerative PVT power plants: Overview and a practical example. Sustainable Energy Technologies and Assessments, 2015, 10, 90-101.	2.7	15
60	Design Methodology of Subthreshold Three-Stage CMOS OTAs Suitable for Ultra-Low-Power Low-Area and High Driving Capability. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 1453-1462.	5.4	72
61	High-Performance Four-Stage CMOS OTA Suitable for Large Capacitive Loads. IEEE Transactions on Circuits and Systems I: Regular Papers, 2015, 62, 2476-2484.	5.4	68
62	0.7-V bulk-driven three-stage class-AB OTA. , 2015, , .		1
63	A new enhanced PSPICE implementation of the equivalent circuit model of SiPM detectors. , 2015, , .		5
64	Performance evaluation of a multistring photovoltaic module with distributed DC–DC converters. IET Renewable Power Generation, 2015, 9, 935-942.	3.1	25
65	Integrated Quenching-and-Reset Circuit for Single-Photon Avalanche Diodes. IEEE Transactions on Instrumentation and Measurement, 2015, 64, 271-277.	4.7	24
66	High-performance frequency compensation topology for four-stage OTAs. , 2014, , .		9
67	Self-Biased Dual-Path Push-Pull Output Buffer Amplifier for LCD Column Drivers. IEEE Transactions on Circuits and Systems I: Regular Papers, 2014, 61, 663-670.	5.4	27
68	Remote monitoring system for stand-alone photovoltaic power plants: The case study of a PV-powered outdoor refrigerator. Energy Conversion and Management, 2014, 78, 862-871.	9.2	59
69	A new accurate analytical expression for the SiPM transient response to single photons. , 2014, , .		1
70	Monolithic quenching-and-reset circuit for single-photon avalanche diodes. , 2014, , .		0
71	Estimation of in-cylinder pressure using spark plug discharge current measurements. , 2013, , .		3
72	Microâ€scale inductorless maximum power point tracking DC–DC converter. IET Power Electronics, 2013, 6, 1634-1639.	2.1	20

#	Article	IF	CITATIONS
73	Optimized frequency compensation topology for low-power three-stage OTAs., 2013,,.		1
74	Analytical comparison of reversed nested Miller frequency compensation techniques. International Journal of Circuit Theory and Applications, 2010, 38, 709-737.	2.0	65
75	Analysis and Implementation of a Minimum-Supply Body-Biased CMOS Differential Amplifier Cell. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2009, 17, 172-180.	3.1	25
76	Analytical comparison of frequency compensation techniques in three-stage amplifiers. International Journal of Circuit Theory and Applications, 2008, 36, 53-80.	2.0	88
77	CMOS current-steering DAC architectures based on the triple-tail cell. International Journal of Circuit Theory and Applications, 2008, 36, 233-246.	2.0	5
78	Single Miller capacitor frequency compensation with nulling resistor for threeâ€stage amplifiers. International Journal of Circuit Theory and Applications, 2008, 36, 825-837.	2.0	31
79	Optimal energy management of a photovoltaic stand-alone dual battery system. , 2008, , .		8
80	Comparison of the Frequency Compensation Techniques for CMOS Two-Stage Miller OTAs. IEEE Transactions on Circuits and Systems II: Express Briefs, 2008, 55, 1099-1103.	3.0	33
81	A novel MPPT charge regulator for a photovoltaic stand-alone telecommunication system. , 2008, , .		6
82	A 2.5-GHz DDFS-PLL With 1.8-MHz Bandwidth in 0.35-\$mu\$m CMOS. IEEE Journal of Solid-State Circuits, 2008, 43, 1403-1413.	5.4	21
83	An advanced SOC model for a stand-alone telecommunication system. , 2008, , .		1
84	CMOS Miller OTA with Body-Biased Output Stage. , 2007, , .		3
85	Advances in Reversed Nested Miller Compensation. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2007, 54, 1459-1470.	0.1	153
86	Single Miller capacitor frequency compensation with nulling resistor for three-stage amplifiers. , 2007, , .		4
87	Improved Reversed Nested Miller Frequency Compensation Technique With Voltage Buffer and Resistor. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2007, 54, 382-386.	2.2	84
88	High-Drive and Linear CMOS Class-AB Pseudo-Differential Amplifier. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2007, 54, 112-116.	2.2	12
89	CMOS voltage feedback current amplifier. , 2007, , .		0
90	CMOS High-CMRR Current Output Stages. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2007, 54, 745-749.	2.2	13

#	Article	IF	CITATIONS
91	Two CMOS Current Feedback Operational Amplifiers. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007, 54, 944-948.	3.0	20
92	Design Procedures for Three-Stage CMOS OTAs With Nested-Miller Compensation. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2007, 54, 933-940.	0.1	85
93	Three-Stage CMOS OTA for Large Capacitive Loads With Efficient Frequency Compensation Scheme. IEEE Transactions on Circuits and Systems Part 2: Express Briefs, 2006, 53, 1044-1048.	2.2	68
94	Design of cascaded ECL gates with power constraint. Electronics Letters, 2006, 42, 211.	1.0	1
95	Optimised design of ECL gates with power constraint. Electronics Letters, 2004, 40, 1169.	1.0	2
96	Optimized design of ECL gates with a power constraint. , 0, , .		0
97	CMOS class AB single-to-differential transconductor., 0,,.		1
98	Current-steering D/A converter based on triple tail cell. , 0, , .		1
99	High-Performance CMOS Pseudo-Differential Amplifier. , 0, , .		12