
Fenghong Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5127903/publications.pdf Version: 2024-02-01

FENCHONG LL

#	Article	IF	CITATIONS
1	Electrochemical Route to Fabricate Filmâ€Like Conjugated Microporous Polymers and Application for Organic Electronics. Advanced Materials, 2013, 25, 3443-3448.	21.0	212
2	π onjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions. Angewandte Chemie - International Edition, 2015, 54, 13594-13598.	13.8	182
3	Nitrileâ€Substituted QA Derivatives: New Acceptor Materials for Solutionâ€Processable Organic Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2011, 1, 431-439.	19.5	135
4	Porous Organic Polymer Films with Tunable Work Functions and Selective Hole and Electron Flows for Energy Conversions. Angewandte Chemie - International Edition, 2016, 55, 3049-3053.	13.8	121
5	Achieving High Efficiency of PTB7â€Based Polymer Solar Cells via Integrated Optimization of Both Anode and Cathode Interlayers. Advanced Energy Materials, 2014, 4, 1301771.	19.5	102
6	Aqueous Solution Processed Photoconductive Cathode Interlayer for High Performance Polymer Solar Cells with Thick Interlayer and Thick Active Layer. Advanced Materials, 2016, 28, 7521-7526.	21.0	102
7	Efficient polymer/nanocrystal hybrid solar cells fabricated from aqueous materials. Energy and Environmental Science, 2011, 4, 2831.	30.8	58
8	A water-soluble metallophthalocyanine derivative as a cathode interlayer for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 12484-12491.	10.3	54
9	Insights into the working mechanism of cathode interlayers in polymer solar cells via [(C ₈ H ₁₇) ₄ N] ₄ [SiW ₁₂ O ₄₀]. Journal of Materials Chemistry A, 2016, 4, 19189-19196.	10.3	42
10	Highly efficient polymer solar cells based on a universal cathode interlayer composed of metallophthalocyanine derivative with good film-forming property. Journal of Materials Chemistry A, 2015, 3, 4547-4554.	10.3	37
11	Improvement in Open-Circuit Voltage of Thin Film Solar Cells from Aqueous Nanocrystals by Interface Engineering. ACS Applied Materials & Interfaces, 2016, 8, 900-907.	8.0	35
12	High Performance Small-Molecule Cathode Interlayer Materials with D-A-D Conjugated Central Skeletons and Side Flexible Alcohol/Water-Soluble Groups for Polymer Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 32823-32832.	8.0	35
13	High-Efficiency Aqueous-Processed Polymer/CdTe Nanocrystals Planar Heterojunction Solar Cells with Optimized Band Alignment and Reduced Interfacial Charge Recombination. ACS Applied Materials & Interfaces, 2017, 9, 31345-31351.	8.0	29
14	Porous Organic Polymer Films with Tunable Work Functions and Selective Hole and Electron Flows for Energy Conversions. Angewandte Chemie, 2016, 128, 3101-3105.	2.0	25
15	Improving the efficiency of polymer solar cells based on furan-flanked diketopyrrolopyrrole copolymer via solvent additive and methanol treatment. Nanoscale, 2015, 7, 15945-15952.	5.6	24
16	N-type cathode interlayer based on dicyanomethylenated quinacridone derivative for high-performance polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 2169-2177.	10.3	24
17	Improving the efficiency of polymer solar cells via a treatment of methanol : water on the active layers. Journal of Materials Chemistry A, 2016, 4, 9644-9652.	10.3	23
18	Cathode and Anode Interlayers Based on Polymer Carbon Dots via Work Function Regulation for Efficient Polymer Solar Cells. Advanced Materials Interfaces, 2018, 5, 1701519.	3.7	20

Fenghong Li

#	Article	IF	CITATIONS
19	Application of a water-soluble metallophthalocyanine derivative as a cathode interlayer for the polymer solar cells. Solar Energy Materials and Solar Cells, 2015, 141, 93-100.	6.2	19
20	Improving the Photovoltaic Performance of Polymer Solar Cells Based on Furan-Flanked Diketopyrrolopyrrole Copolymers via Tuning the Alkyl Side Chain. Journal of Physical Chemistry C, 2016, 120, 4824-4832.	3.1	15
21	Alcohol-Soluble Isoindigo Derivative IIDTh-NSB as a Novel Modifier of ZnO in Inverted Polymer Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 42969-42977.	8.0	15
22	Role of Central Metal Ions in 8â€Hydroxyquinolineâ€Doped ZnO Interfacial Layers for Improving the Performance of Polymer Solar Cells. Advanced Materials Interfaces, 2018, 5, 1801172.	3.7	15
23	Large area organic photovoltaic modules fabricated on a 30Âcm by 20Âcm substrate with a power conversion efficiency of 9.5%. Solar Energy Materials and Solar Cells, 2020, 218, 110762.	6.2	12
24	Modification of Hole Transport Layers for Fabricating High Performance Nonâ€ f ullerene Polymer Solar Cells. Chinese Journal of Chemistry, 2020, 38, 817-822.	4.9	12
25	Effect of alkyl chain length of the ammonium groups in SEPC-CIL on the performance of polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 15294-15301.	10.3	11
26	[(C 8 H 17) 4 N] 4 [SiW 12 O 40] (TASiWâ€12)â€Modified SnO 2 Electron Transport Layer for Efficient and Stable Perovskite Solar Cells. Solar Rrl, 2020, 4, 2000406.	5.8	10
27	Naphthodithieno[3,2-b]thiophene-based donor-acceptor copolymers: Synthesis, characterization, and their photovoltaic and charge transport properties. Dyes and Pigments, 2016, 131, 1-8.	3.7	8
28	Insights into Working Mechanism of Alkali Metal Fluorides as Dopants of ZnO Films in Inverted Polymer Solar Cells. Journal of Physical Chemistry C, 2018, 122, 24542-24549.	3.1	8
29	Revealing working mechanisms of PFN as a cathode interlayer in conventional and inverted polymer solar cells. Physical Chemistry Chemical Physics, 2019, 21, 20065-20072.	2.8	8
30	Benzothiadiazole-oligothiophene flanked dicyanomethylenated quinacridone for non-fullerene acceptors in polymer solar cells. New Journal of Chemistry, 2018, 42, 5005-5013.	2.8	7
31	Quinacridone-based small molecule acceptor as a third component in ternary organic solar cells. Chemical Engineering Journal, 2022, 432, 134405.	12.7	6
32	Metallophthalocyanine derivatives utilized as cathode interlayers for polymer solar cells: a practical approach to prepare a uniform film. RSC Advances, 2016, 6, 40442-40449.	3.6	5
33	Surfactant-Encapsulated Polyoxometalate Complex as a Cathode Interlayer for Nonfullerene Polymer Solar Cells. CCS Chemistry, 2022, 4, 975-986.	7.8	5
34	Vinylidenedithiophenmethyleneoxindole-based donor-acceptor copolymers with 1D and 2D conjugated backbones: Synthesis, characterization, and their photovoltaic properties. Dyes and Pigments, 2017, 144, 1-8.	3.7	4
35	Ternary organic solar cell with 1750 hours half lifetime under UV irradiation with solar intensity. Solar Rrl, 0, , .	5.8	4
36	Investigating Working Mechanism of Metallophthalocyanine Derivatives as a Cathode Interlayer in Polymer Solar Cells by Photoemission Spectroscopy. Journal of Physical Chemistry C, 2017, 121, 21244-21251.	3.1	2

#	Article	IF	CITATIONS
37	Anode engineering of highly efficient polymer solar cells using treated ITO. Chemical Research in Chinese Universities, 2016, 32, 689-694.	2.6	1
38	A naphthodithieno[3,2- <i>b</i>]thiophene-based copolymer as a novel third component in ternary polymer solar cells with a simultaneously enhanced open circuit voltage, short circuit current and fill factor. New Journal of Chemistry, 2018, 42, 5314-5322.	2.8	1