
Muhammad Waqas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5127891/publications.pdf Version: 2024-02-01

MUHAMMAD WAOAS

#	Article	IF	CITATIONS
1	Recent Development in Separators for Highâ€Temperature Lithiumâ€Ion Batteries. Small, 2019, 15, e1901689.	10.0	158
2	Highly Efficient PVDFâ€HFP/Colloidal Alumina Composite Separator for Highâ€Temperature Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2018, 5, 1701147.	3.7	89
3	Highâ€Performance PEâ€BN/PVDFâ€HFP Bilayer Separator for Lithiumâ€ŀon Batteries. Advanced Materials Interfaces, 2019, 6, 1801330.	3.7	67
4	Molecular â€~capturing' and â€~seizing' MoS2/TiN interlayers suppress polysulfide shuttling and self-discharge of Li–S batteries. Energy Storage Materials, 2020, 27, 333-341.	18.0	63
5	Carbon–Tungsten Disulfide Composite Bilayer Separator for High-Performance Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 39417-39421.	8.0	44
6	A Highlyâ€Efficient Composite Separator with Strong Ligand Interaction for Highâ€Temperature Lithiumâ€ion Batteries. ChemElectroChem, 2018, 5, 2722-2728.	3.4	37
7	Decade of bio-inspired soft robots: a review. Smart Materials and Structures, 2022, 31, 073002.	3.5	34
8	An Efficient, Scalable Route to Robust PVDFâ€ <i>co</i> â€HFP/SiO ₂ Separator for Longâ€Cycle Lithium Ion Batteries. Physica Status Solidi - Rapid Research Letters, 2018, 12, 1800319.	2.4	30
9	A highly efficient surface modified separator fabricated with atmospheric atomic layer deposition for high temperature lithium ion batteries. International Journal of Energy Research, 2020, 44, 7035-7046.	4.5	24
10	A robust bi-layer separator with Lewis acid-base interaction for high-rate capacity lithium-ion batteries. Composites Part B: Engineering, 2019, 177, 107448.	12.0	23
11	Multi-material Bio-inspired Soft Octopus Robot for Underwater Synchronous Swimming. Journal of Bionic Engineering, 2022, 19, 1229-1241.	5.0	23
12	An Efficient Route to Polymeric Electrolyte Membranes with Interparticle Chain Microstructure Toward Highâ€Temperature Lithiumâ€Ion Batteries. Advanced Materials Interfaces, 2017, 4, 1601236.	3.7	22
13	Three-dimensional twisted fiber composite as high-loading cathode support for lithium sulfur batteries. Composites Part B: Engineering, 2019, 174, 107025.	12.0	16
14	A Robust Surface-Modified Separator Fabricated with Roll-to-Roll Atomic Layer Deposition and Electrohydrodynamic Deposition Techniques for High Temperature Lithium Ion Batteries. Journal of the Electrochemical Society, 2020, 167, 160507.	2.9	14
15	Multifunctional Cathodic Interlayer with Polysulfide Immobilization Mechanism for Highâ€Performance Liâ€6 Batteries. ChemistrySelect, 2020, 5, 12009-12019.	1.5	13
16	Highly sensitive mechano-optical strain sensors based on 2D materials for human wearable monitoring and high-end robotic applications. Journal of Materials Chemistry C, 2022, 10, 932-940.	5.5	9
17	Nitrogenâ€Enriched Mesoporous Carbon Spheres as Efficient Anode Material for Longâ€Cycle Li/Naâ€Ion Batteries. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	1.8	7
18	A highly efficient composite separator embedded with colloidal lanthanum oxide nanocrystals for highâ€temperature lithiumâ€ion batteries. International Journal of Energy Research, 2021, 45, 11179-11192.	4.5	6

MUHAMMAD WAQAS

#	Article	IF	CITATIONS
19	Ionic conductivity evolution at strained crystal interfaces in solid oxide fuel cells (SOFCs). International Journal of Hydrogen Energy, 2016, 41, 22254-22259.	7.1	5
20	Electrochemical Performance of NiCo ₂ O ₄ Spinel Cathodes for Intermediate Temperature Solid Oxide Fuel Cells. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, 2100542.	1.8	4
21	Coupled dictionary learning in wavelet domain for Single-Image Super-Resolution. Signal, Image and Video Processing, 2018, 12, 453-461.	2.7	3
22	Reduced electrochemical performances of proton exchange membrane fuel cells due to gaseous diffusion in electrolytes. RSC Advances, 2016, 6, 97194-97198.	3.6	2
23	Ionic conductivity evolution of isotropic crystal with double strained interfaces. Solid State Ionics, 2017, 303, 167-171.	2.7	2
24	Hierarchical Self‧upported Carbon Nanostructure Enables Superior Stability of Highly Nitrogenâ€Đoped anodes. ChemElectroChem, 2020, 7, 3883-3888.	3.4	1