Koen V Hindriks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5127783/publications.pdf

Version: 2024-02-01

304602 265120 2,669 143 22 42 citations h-index g-index papers 155 155 155 1256 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Integrating Valence and Arousal Within an Agent-Based Model of Emotion Contagion. Lecture Notes in Computer Science, 2021, , 303-315.	1.0	5
2	How to Recognize and Explain Bidding Strategies in Negotiation Support Systems. Studies in Computational Intelligence, 2021 , , $35-53$.	0.7	0
3	Who Wants to Grant Robots Rights?. Frontiers in Robotics and Al, 2021, 8, 781985.	2.0	2
4	A Feasibility Study of a Social Robot Collecting Patient Reported Outcome Measurements from Older Adults. International Journal of Social Robotics, 2020, 12, 259-266.	3.1	15
5	On the Expressivity of a Parametric Humanoid Emotion Model. , 2020, , .		1
6	Agent programming in the cognitive era. Autonomous Agents and Multi-Agent Systems, 2020, 34, 1.	1.3	24
7	Design Patterns for an Interactive Storytelling Robot to Support Children's Engagement and Agency. , 2020, , .		26
8	Quality of Care Perceived by Older Patients and Caregivers in Integrated Care Pathways With Interviewing Assistance From a Social Robot: Noninferiority Randomized Controlled Trial. Journal of Medical Internet Research, 2020, 22, e18787.	2.1	11
9	Welcoming Robot Behaviors for Drawing Attention. , 2019, , .		2
10	What Could Go Wrong?! 2nd Workshop: Lessons Learned When Doing HRI User Studies with Off-the-Shelf Social Robots. , 2019, , .		1
11	A Formal Graphical Language of Interdependence in Teamwork. IEEE Intelligent Systems, 2019, 34, 25-34.	4.0	1
12	Welcoming Robot Behaviors for Drawing Attention. , 2019, , .		2
13	Robot for health data acquisition among older adults: a pilot randomised controlled cross-over trial. BMJ Quality and Safety, 2019, 28, 793-799.	1.8	21
14	Evaluating Cognitive and Affective Intelligent Agent Explanations in a Long-Term Health-Support Application for Children with Type 1 Diabetes. , 2019, , .		4
15	Enthusiastic Robots Make Better Contact. , 2019, , .		5
16	Getting Acquainted for a Long-Term Child-Robot Interaction. Lecture Notes in Computer Science, 2019, , 423-433.	1.0	5
17	A Robot Math Tutor that Gives Feedback. Lecture Notes in Computer Science, 2019, , 601-610.	1.0	3
18	Engineering Multi-Agent Systems. Software Engineering Notes: an Informal Newsletter of the Special Interest Committee on Software Engineering / ACM, 2019, 44, 18-28.	0.5	16

#	Article	IF	CITATIONS
19	Artificial Intelligence in Health Care and Medicine: A Personalized Approach. Acta Scientific Medical Sciences, 2019, 3, 71-78.	0.0	0
20	Proof of Concept of a Social Robot for Patient Reported Outcome Measurements in Elderly Persons. , 2018, , .		8
21	Automating failure detection in cognitive agent programs. International Journal of Agent Oriented Software Engineering, 2018, 6, 275.	0.1	1
22	Persistent Robot-Assisted Disaster Response. , 2018, , .		9
23	Reducing Stress by Bonding with a Social Robot. , 2018, , .		8
24	Do You Have Pain?., 2018,,.		4
25	What Could Go Wrong. , 2018, , .		0
26	Alternating Offers Protocols for Multilateral Negotiation. Studies in Computational Intelligence, 2017, , 153-167.	0.7	57
27	The Sixth Automated Negotiating Agents Competition (ANAC 2015). Studies in Computational Intelligence, 2017, , 139-151.	0.7	22
28	Boolean Negotiation Games. Lecture Notes in Computer Science, 2017, , 1-18.	1.0	0
29	Incremental Development of Large-Scale Human-Robot Teamwork in Disaster Response Environments. , 2017, , .		1
30	Designing a source-level debugger for cognitive agent programs. Autonomous Agents and Multi-Agent Systems, 2017, 31, 941-970.	1.3	8
31	Specifying and testing the design rationale of social robots for behavior change in children. Cognitive Systems Research, 2017, 43, 250-265.	1.9	11
32	Personalised self-explanation by robots: The role of goals versus beliefs in robot-action explanation for children and adults. , 2017 , , .		40
33	Self-explanations of a cognitive agent by citing goals and emotions. , 2017, , .		3
34	The role of emotion in self-explanations by cognitive agents. , 2017, , .		14
35	Expectation management in child-robot interaction. , 2017, , .		4
36	Exploring the Ethical Landscape of Robot-Assisted Search and Rescue. Intelligent Systems, Control and Automation: Science and Engineering, 2017, , 93-107.	0.3	10

3

#	Article	IF	CITATIONS
37	An Introduction to the Pocket Negotiator: A General Purpose Negotiation Support System. Lecture Notes in Computer Science, 2017, , 13-27.	1.0	14
38	Omniscient Debugging for GOAL Agents in Eclipse (Demonstration)., 2017,,.		0
39	Omniscient Debugging for Cognitive Agent Programs. , 2017, , .		3
40	Ontological reasoning for human-robot teaming in search and rescue missions. , 2016, , .		9
41	Altruistic coordination for multi-robot cooperative pathfinding. Applied Intelligence, 2016, 44, 269-281.	3.3	15
42	Learning about the opponent in automated bilateral negotiation: a comprehensive survey of opponent modeling techniques. Autonomous Agents and Multi-Agent Systems, 2016, 30, 849-898.	1.3	94
43	Dynamic task allocation for multi-robot search and retrieval tasks. Applied Intelligence, 2016, 45, 383-401.	3.3	42
44	Optimal Non-adaptive Concession Strategies with Incomplete Information. Studies in Computational Intelligence, 2016, , 39-54.	0.7	2
45	CAAF: A Cognitive Affective Agent Programming Framework. Lecture Notes in Computer Science, 2016, , 317-330.	1.0	11
46	Using Automatic Failure Detection for Cognitive Agents in Eclipse (AAMAS 2016 DEMONSTRATION). Lecture Notes in Computer Science, 2016, , 59-80.	1.0	3
47	The Automated Negotiating Agents Competition, 2010–2015. Al Magazine, 2015, 36, 115-118.	1.4	26
48	Effects of a robotic storyteller's moody gestures on storytelling perception. , 2015, , .		19
49	On the need for a coordination mechanism to guarantee task completion in a cooperative team. , 2015, , .		O
50	Designing a Knowledge Representation Interface for Cognitive Agents. Lecture Notes in Computer Science, 2015, , 33-50.	1.0	4
51	TRADR Project: Long-Term Human-Robot Teaming for Robot Assisted Disaster Response. KI - Kunstliche Intelligenz, 2015, 29, 193-201.	2.2	50
52	Heuristics for using CP-nets in utility-based negotiation without knowing utilities. Knowledge and Information Systems, 2015, 45, 357-388.	2.1	19
53	Human-Robot Teamwork in USAR Environments. , 2015, , .		8
54	Mood contagion of robot body language in human robot interaction. Autonomous Agents and Multi-Agent Systems, 2015, 29, 1216-1248.	1.3	27

#	Article	IF	Citations
55	A Fully Integrated Development Environment for Agent-Oriented Programming. Lecture Notes in Computer Science, 2015, , 288-291.	1.0	3
56	Designing a Source-Level Debugger for Cognitive Agent Programs. Lecture Notes in Computer Science, 2015, , 335-350.	1.0	5
57	Performance of Communicating Cognitive Agents in Cooperative Robot Teams. Lecture Notes in Computer Science, 2015, , 13-31.	1.0	O
58	HRI Workshop on Human-Robot Teaming. , 2015, , .		2
59	Active learning of affordances for robot use of household objects. , 2014, , .		16
60	Effective transfer learning of affordances for household robots. , 2014, , .		8
61	A study into modeling coordination in disruption management by Airline Operations Control. , 2014, , .		1
62	Effects of bodily mood expression of a robotic teacher on students. , 2014, , .		24
63	An Approach to Navigation for the Humanoid Robot Nao in Domestic Environments. Lecture Notes in Computer Science, 2014, , 298-310.	1.0	8
64	GENIUS: AN INTEGRATED ENVIRONMENT FOR SUPPORTING THE DESIGN OF GENERIC AUTOMATED NEGOTIATORS. Computational Intelligence, 2014, 30, 48-70.	2.1	135
65	Effective acceptance conditions in real-time automated negotiation. Decision Support Systems, 2014, 60, 68-77.	3.5	28
66	The Shaping of the Agent-Oriented Mindset. Lecture Notes in Computer Science, 2014, , 1-14.	1.0	3
67	GOAL: A Multi-agent Programming Language Applied to an Exploration Game. , 2014, , 235-258.		13
68	Decoupling Negotiating Agents to Explore the Space of Negotiation Strategies. Studies in Computational Intelligence, 2014, , 61-83.	0.7	34
69	Computational Modeling of Emotion: Toward Improving the Inter- and Intradisciplinary Exchange. IEEE Transactions on Affective Computing, 2013, 4, 246-266.	5.7	138
70	Evaluating practical negotiating agents: Results and analysis of the 2011 international competition. Artificial Intelligence, 2013, 198, 73-103.	3.9	137
71	Mood expression through parameterized functional behavior of robots. , 2013, , .		10
72	The Relative Importance and Interrelations between Behavior Parameters for Robots' Mood Expression. , 2013 , , .		13

#	Article	lF	CITATIONS
73	Predicting the Performance of Opponent Models in Automated Negotiation., 2013,,.		24
74	Robot learning and use of affordances in goal-directed tasks. , 2013, , .		11
75	Bodily Mood Expression: Recognize Moods from Functional Behaviors of Humanoid Robots. Lecture Notes in Computer Science, 2013, , 511-520.	1.0	12
76	The Second Automated Negotiating Agents Competition (ANAC2011). Studies in Computational Intelligence, 2013, , 183-197.	0.7	13
77	A Tit for Tat Negotiation Strategy for Real-Time Bilateral Negotiations. Studies in Computational Intelligence, 2013, , 229-233.	0.7	21
78	Acceptance Conditions in Automated Negotiation. Studies in Computational Intelligence, 2013, , 95-111.	0.7	15
79	Heuristic-Based Approaches for CP-Nets in Negotiation. Studies in Computational Intelligence, 2013, , 113-123.	0.7	10
80	Learning to Improve Agent Behaviours in GOAL. Lecture Notes in Computer Science, 2013, , 158-173.	1.0	8
81	An Agent-Based Cognitive Robot Architecture. Lecture Notes in Computer Science, 2013, , 54-71.	1.0	14
82	Goal-Based Qualitative Preference Systems. Lecture Notes in Computer Science, 2013, , 153-169.	1.0	0
83	Reasoning about Interest-Based Preferences. Communications in Computer and Information Science, 2013, , 115-130.	0.4	0
84	Learning Classifier System on a humanoid NAO robot in dynamic environments. , 2012, , .		3
85	Value-sensitive design patterns for pervasive health care. , 2012, , .		4
86	An empirical study of cognitive agent programs. Multiagent and Grid Systems, 2012, 8, 187-222.	0.5	5
87	Negotiating Agents. Al Magazine, 2012, 33, 79.	1.4	16
88	Qualitative One-to-Many Multi-Issue Negotiation: Approximating the QVA. Group Decision and Negotiation, 2012, 21, 49-77.	2.0	8
89	Special Issue on â€~Human Factors and Computational Models in Negotiation'. Group Decision and Negotiation, 2012, 21, 1-2.	2.0	3
90	Argumentation-Based Qualitative Preference Modelling with Incomplete and Uncertain Information. Group Decision and Negotiation, 2012, 21, 99-127.	2.0	7

#	Article	IF	CITATIONS
91	The First Automated Negotiating Agents Competition (ANAC 2010). Studies in Computational Intelligence, 2012, , 113-135.	0.7	52
92	An Empirical Study of Patterns in Agent Programs. Lecture Notes in Computer Science, 2012, , 196-211.	1.0	5
93	The iCat as a Natural Interaction Partner. Lecture Notes in Computer Science, 2012, , 212-231.	1.0	7
94	Reinforcement Learning as Heuristic for Action-Rule Preferences. Lecture Notes in Computer Science, 2012, , 25-40.	1.0	4
95	An Interface for Agent-Environment Interaction. Lecture Notes in Computer Science, 2012, , 139-158.	1.0	10
96	GOAL Agents Instantiate Intention Logic. Lecture Notes in Computer Science, 2012, , 196-219.	1.0	7
97	Debugging Is Explaining. Lecture Notes in Computer Science, 2012, , 31-45.	1.0	15
98	Measuring the Performance of Online Opponent Models in Automated Bilateral Negotiation. Lecture Notes in Computer Science, 2012, , 1-14.	1.0	16
99	An Argumentation Framework for Qualitative Multi-criteria Preferences. Lecture Notes in Computer Science, 2012, , 85-98.	1.0	5
100	HactarV2: An Agent Team Strategy Based on Implicit Coordination. Lecture Notes in Computer Science, 2012, , 173-184.	1.0	4
101	Multi-attribute Preference Logic. Lecture Notes in Computer Science, 2012, , 181-195.	1.0	2
102	Let's dans! An analytic framework of negotiation dynamics and strategies. Web Intelligence and Agent Systems, 2011, 9, 319-335.	0.4	11
103	Towards an environment interface standard for agent platforms. Annals of Mathematics and Artificial Intelligence, 2011, 61, 261-295.	0.9	54
104	Principles for Value-Sensitive Agent-Oriented Software Engineering. Lecture Notes in Computer Science, 2011, , 1-16.	1.0	8
105	An Argumentation Framework for Deriving Qualitative Risk Sensitive Preferences. Lecture Notes in Computer Science, 2011, , 556-565.	1.0	0
106	Eliminating issue dependencies in complex negotiation domains. Multiagent and Grid Systems, 2010, 6, 477-501.	0.5	2
107	Model Checking Agent Programs by Using the Program Interpreter. Lecture Notes in Computer Science, 2010, , 219-237.	1.0	16
108	Towards a Quality Assessment Method for Learning Preference Profiles in Negotiation. Lecture Notes in Business Information Processing, 2010, , 46-59.	0.8	14

#	Article	IF	CITATIONS
109	Supporting the Design of General Automated Negotiators. Studies in Computational Intelligence, 2010, , 69-87.	0.7	18
110	Do You Get It? User-Evaluated Explainable BDI Agents. Lecture Notes in Computer Science, 2010, , 28-39.	1.0	42
111	Argumentation-Based Preference Modelling with Incomplete Information. Lecture Notes in Computer Science, 2010, , 141-157.	1.0	2
112	A Computational Semantics for Communicating Rational Agents Based on Mental Models. Lecture Notes in Computer Science, 2010, , 31-48.	1.0	7
113	Approximating the Qualitative Vickrey Auction by a Negotiation Protocol. Lecture Notes in Business Information Processing, 2010, , 44-57.	0.8	0
114	The Benefits of Opponent Models in Negotiation. , 2009, , .		16
115	Programming Rational Agents in GOAL. , 2009, , 119-157.		115
116	Using Temporal Logic to Integrate Goals and Qualitative Preferences into Agent Programming. Lecture Notes in Computer Science, 2009, , 215-232.	1.0	13
117	Combining Multiple Knowledge Representation Technologies into Agent Programming Languages. Lecture Notes in Computer Science, 2009, , 60-74.	1.0	10
118	Exploring Heuristic Action Selection in Agent Programming. Lecture Notes in Computer Science, 2009, , 24-39.	1.0	6
119	Towards a Verification Framework for Communicating Rational Agents. Lecture Notes in Computer Science, 2009, , 177-182.	1.0	1
120	GOAL as a Planning Formalism. Lecture Notes in Computer Science, 2009, , 29-40.	1.0	4
121	Programming Organization-Aware Agents. Lecture Notes in Computer Science, 2009, , 98-112.	1.0	21
122	An Empirical Study of Agent Programs. Lecture Notes in Computer Science, 2009, , 200-215.	1.0	5
123	A Multi-Agent Environment for Negotiation. , 2009, , 333-363.		5
124	Approximating an auction mechanism by multi-issue negotiation., 2008,,.		3
125	Creating human-machine synergy in negotiation support systems. , 2008, , .		18
126	Towards an Open Negotiation Architecture for Heterogeneous Agents. Lecture Notes in Computer Science, 2008, , 264-279.	1.0	10

#	Article	IF	Citations
127	GOAL Agents Instantiate Intention Logic. Lecture Notes in Computer Science, 2008, , 232-244.	1.0	6
128	Compiling GOAL Agent Programs into Jazzyk Behavioural State Machines. Lecture Notes in Computer Science, 2008, , 86-98.	1.0	1
129	Negotiation Dynamics: Analysis, Concession Tactics, and Outcomes. , 2007, , .		15
130	A verification framework for agent programming with declarative goals. Journal of Applied Logic, 2007, 5, 277-302.	1.1	56
131	Automatic Issue Extraction from a Focused Dialogue. Lecture Notes in Computer Science, 2007, , 204-216.	1.0	1
132	Analysis of Negotiation Dynamics. Lecture Notes in Computer Science, 2007, , 27-35.	1.0	8
133	Modules as Policy-Based Intentions: Modular Agent Programming in GOAL. , 2007, , 156-171.		29
134	Eliminating Interdependencies Between Issues for Multi-issue Negotiation. Lecture Notes in Computer Science, 2006, , 301-316.	1.0	29
135	Agent Logics as Program Logics: Grounding KARO. , 2006, , 404-418.		6
136	A Programming Language for Coordinating Group Actions. Lecture Notes in Computer Science, 2002, , 313-321.	1.0	3
137	Agent Programming with Declarative Goals. Lecture Notes in Computer Science, 2001, , 228-243.	1.0	88
138	A Programming Logic for Part of the Agent Language 3APL. Lecture Notes in Computer Science, 2001, , 78-89.	1.0	6
139	Semantics of Communicating Agents Based on Deduction and Abduction. Lecture Notes in Computer Science, 2000, , 63-79.	1.0	16
140	A Formal Architecture for the 3APL Agent Programming Language. Lecture Notes in Computer Science, 2000, , 168-187.	1.0	11
141	Agent Programming in 3APL. Autonomous Agents and Multi-Agent Systems, 1999, 2, 357-401.	1.3	256
142	Control Structures of Rule-Based Agent Languages. Lecture Notes in Computer Science, 1999, , 381-396.	1.0	22
143	Formal semantics for an abstract agent programming language. Lecture Notes in Computer Science, 1998, , 215-229.	1.0	41