David Kovacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5127302/publications.pdf Version: 2024-02-01

DAVID KOVACS

#	Article	IF	CITATIONS
1	Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study. International Journal of Nanomedicine, 2017, Volume 12, 871-883.	6.7	120
2	Silver nanoparticles defeat p53-positive and p53-negative osteosarcoma cells by triggering mitochondrial stress and apoptosis. Scientific Reports, 2016, 6, 27902.	3.3	94
3	Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. International Journal of Nanomedicine, 2018, Volume 13, 695-703.	6.7	78
4	Silver nanoparticles modulate ABC transporter activity and enhance chemotherapy in multidrug resistant cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 601-610.	3.3	54
5	Cancer Therapy by Silver Nanoparticles: Fiction or Reality?. International Journal of Molecular Sciences, 2022, 23, 839.	4.1	54
6	Endoplasmic reticulum stress: major player in size-dependent inhibition of P-glycoprotein by silver nanoparticles in multidrug-resistant breast cancer cells. Journal of Nanobiotechnology, 2019, 17, 9.	9.1	52
7	Lipid exchange and signaling at ER–Golgi contact sites. Current Opinion in Cell Biology, 2019, 57, 8-15.	5.4	48
8	Modulating chromatin structure and DNA accessibility by deacetylase inhibition enhances the anti-cancer activity of silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016, 146, 670-677.	5.0	38
9	Core–shell nanoparticles suppress metastasis and modify the tumour-supportive activity of cancer-associated fibroblasts. Journal of Nanobiotechnology, 2020, 18, 18.	9.1	37
10	Molecular and cellular dissection of the oxysterol-binding protein cycle through a fluorescent inhibitor. Journal of Biological Chemistry, 2020, 295, 4277-4288.	3.4	24
11	The cytoprotective effect of biglycan core protein involves Toll-like receptor 4 signaling in cardiomyocytes. Journal of Molecular and Cellular Cardiology, 2016, 99, 138-150.	1.9	23
12	Multicomponent access to androstano-arylpyrimidines under microwave conditions and evaluation of their anti-cancer activity in vitro. Journal of Steroid Biochemistry and Molecular Biology, 2017, 172, 79-88.	2.5	21
13	Synergistic Radiosensitization by Gold Nanoparticles and the Histone Deacetylase Inhibitor SAHA in 2D and 3D Cancer Cell Cultures. Nanomaterials, 2020, 10, 158.	4.1	17
14	A comprehensive library of fluorescent constructs of SARS oVâ€2 proteins and their initial characterisation in different cell types. Biology of the Cell, 2021, 113, 311-328.	2.0	17
15	Antifibrotic effect of mitomycinâ€C on human vocal cord fibroblasts. Laryngoscope, 2019, 129, E255-E262.	2.0	14
16	Ion exchange defines the biological activity of titanate nanotubes. Journal of Basic Microbiology, 2016, 56, 557-565.	3.3	13
17	Acetylations of Ftz-F1 and histone H4K5 are required for the fine-tuning of ecdysone biosynthesis during Drosophila metamorphosis. Developmental Biology, 2015, 404, 80-87.	2.0	11
18	Pulmonary impact of titanium dioxide nanorods: examination of nanorod-exposed rat lungs and human alveolar cells. International Journal of Nanomedicine, 2018, Volume 13, 7061-7077.	6.7	8

DAVID KOVACS

#	Article	IF	CITATIONS
19	Functionalized Mesoporous Silica Nanoparticles for Drug-Delivery to Multidrug-Resistant Cancer Cells. International Journal of Nanomedicine, 0, Volume 17, 3079-3096.	6.7	6
20	Genetic, epigenetic and transcriptional comparison of esophagus tumor‑associated and adjacent normal myofibroblasts. Oncology Reports, 2018, 41, 839-852.	2.6	4
21	Titán-dioxid nanorészecskék szubakut légúti adagolásával kiváltott elektrofiziológiai eltérések / általános toxicitás patkányban. Ideggyogyaszati Szemle, 2017, 70, 127-135.	és 0.7	3