Lila M Gierasch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5127127/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signal sequences. Biochemistry, 1989, 28, 923-930.	1.2	514
2	Sending Signals Dynamically. Science, 2009, 324, 198-203.	6.0	471
3	The crystal structure of the GroES co-chaperonin at 2.8 Ã resolution. Nature, 1996, 379, 37-45.	13.7	452
4	Physicochemical Properties of Cells and Their Effects on Intrinsically Disordered Proteins (IDPs). Chemical Reviews, 2014, 114, 6661-6714.	23.0	391
5	Constrained Peptides: Models of Bioactive Peptides and Protein Substructures. Annual Review of Biochemistry, 1992, 61, 387-416.	5.0	360
6	Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature, 1992, 355, 455-457.	13.7	315
7	Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13357-13361.	3.3	296
8	Hsp70 Chaperone Ligands Control Domain Association via an Allosteric Mechanism Mediated by the Interdomain Linker. Molecular Cell, 2007, 26, 27-39.	4.5	287
9	The changing landscape of protein allostery. Current Opinion in Structural Biology, 2006, 16, 102-108.	2.6	282
10	How Hsp70 Molecular Machines Interact with Their Substrates to Mediate Diverse Physiological Functions. Journal of Molecular Biology, 2015, 427, 1575-1588.	2.0	271
11	The NPXY internalization signal of the LDL receptor adopts a reverse-turn conformation. Cell, 1991, 67, 1195-1201.	13.5	264
12	An Interdomain Energetic Tug-of-War Creates the Allosterically Active State in Hsp70 Molecular Chaperones. Cell, 2012, 151, 1296-1307.	13.5	240
13	Characterization of a functionally important mobile domain of GroES. Nature, 1993, 364, 255-258.	13.7	234
14	Monitoring protein stability and aggregation in vivo by real-time fluorescent labeling. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 523-528.	3.3	226
15	Molecular Mechanisms of Protein Secretion: The Role of the Signal Sequence. Advances in Protein Chemistry, 1986, 38, 109-180.	4.4	213
16	Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. Journal of Biological Chemistry, 2019, 294, 2085-2097.	1.6	202
17	Conformations of (X-L-Pro-Y)2 cyclic hexapeptides. Preferred .betaturn conformers and implications for .beta. turns in proteins. Biochemistry, 1981, 20, 4730-4738.	1.2	200
18	Conformational behavior of Escherichia coli OmpA signal peptides in membrane mimetic environments. Biochemistry, 1993, 32, 4881-4894.	1.2	200

#	Article	IF	CITATIONS
19	Roles of βâ€ŧurns in protein folding: From peptide models to protein engineering. Biopolymers, 2008, 89, 380-391.	1.2	194
20	GTP binding and hydrolysis by the signal recognition particle during initiation of protein translocation. Nature, 1993, 366, 351-354.	13.7	187
21	The chaperonin GroEL binds a polypeptide in an .alphahelical conformation. Biochemistry, 1991, 30, 7359-7362.	1.2	186
22	Structural insights into substrate binding by the molecular chaperone DnaK. Nature Structural Biology, 2000, 7, 298-303.	9.7	184
23	Macromolecular Crowding Remodels the Energy Landscape of a Protein by Favoring a More Compact Unfolded State. Journal of the American Chemical Society, 2010, 132, 10445-10452.	6.6	144
24	Side chain-backbone hydrogen bonding contributes to helix stability in peptides derived from an α-helical region of carboxypeptidase A. Proteins: Structure, Function and Bioinformatics, 1991, 10, 130-139.	1.5	141
25	Exploring Weak, Transient Protein–Protein Interactions in Crowded In Vivo Environments by In-Cell Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2011, 50, 9225-9236.	1.2	140
26	Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6987-6992.	3.3	140
27	Protein folding in the cell: challenges and progress. Current Opinion in Structural Biology, 2011, 21, 32-41.	2.6	140
28	Mutations in the substrate binding domain of the Escherichia coli 70 kda molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling 1 1Edited by M. Gottesman. Journal of Molecular Biology, 1999, 286, 915-932.	2.0	135
29	Exploring the conformational roles of signal sequences: synthesis and conformational analysis of .lambda. receptor protein wild-type and mutant signal peptides. Biochemistry, 1984, 23, 3111-3114.	1.2	124
30	An interdomain sector mediating allostery in Hsp70 molecular chaperones. Molecular Systems Biology, 2010, 6, 414.	3.2	118
31	Keeping it in the family: folding studies of related proteins. Current Opinion in Structural Biology, 2001, 11, 83-93.	2.6	107
32	Post-reductionist protein science, or putting Humpty Dumpty back together again. Nature Chemical Biology, 2009, 5, 774-777.	3.9	107
33	From the test tube to the cell: Exploring the folding and aggregation of a β-clam protein. Biopolymers, 2007, 88, 157-163.	1.2	103
34	Signal Sequences: The Same Yet Different. Cell, 1996, 86, 849-852.	13.5	102
35	Substrate-binding domain conformational dynamics mediate Hsp70 allostery. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E2865-73.	3.3	101
36	Renaturation of citrate synthase: Influence of denaturant and folding assistants. Protein Science, 1992, 1, 522-529.	3.1	98

#	Article	IF	CITATIONS
37	ATPase Subdomain IA Is a Mediator of Interdomain Allostery in Hsp70 Molecular Chaperones. PLoS Computational Biology, 2014, 10, e1003624.	1.5	98
38	Nature's molecular sponges: Small heat shock proteins grow into their chaperone roles. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2727-2728.	3.3	93
39	Unique Physical Properties and Interactions of the Domains of Methylated DNA Binding Protein 2. Biochemistry, 2010, 49, 4395-4410.	1.2	91
40	Conformations and orientations of a signal peptide interacting with phospholipid monolayers. Biochemistry, 1989, 28, 2789-2797.	1.2	90
41	Phospholipid-induced Monomerization and Signal-peptide-induced Oligomerization of SecA. Journal of Biological Chemistry, 2003, 278, 3628-3638.	1.6	90
42	Energy landscapes of functional proteins are inherently risky. Nature Chemical Biology, 2014, 10, 884-891.	3.9	90
43	Helix formation and stability in a signal sequence. Biochemistry, 1989, 28, 8554-8561.	1.2	89
44	Cyclic pentapeptides as models for reverse turns: Determination of the equilibrium distribution between type I and type II conformations of Pro-Asn and Pro-Ala ?-turns. Biopolymers, 1990, 29, 263-287.	1.2	89
45	Mutating the charged residues in the binding pocket of cellular retinoic acid-binding protein simultaneously reduces its binding affinity to retinoic acid and increases its thermostability. Proteins: Structure, Function and Bioinformatics, 1992, 13, 87-99.	1.5	89
46	The LDL Receptor Clustering Motif Interacts with the Clathrin Terminal Domain in a Reverse Turn Conformation. Journal of Cell Biology, 1998, 142, 59-67.	2.3	86
47	Comparing protein folding in vitro and in vivo: foldability meets the fitness challenge. Current Opinion in Structural Biology, 2014, 24, 81-90.	2.6	85
48	Hydrophobic content and lipid interactions of wild-type and mutant OmpA signal peptides correlate with their in vivo function. Biochemistry, 1991, 30, 10155-10163.	1.2	83
49	Equilibrium folding studies of cellular retinoic acid binding protein, a predominantly .betasheet protein. Biochemistry, 1994, 33, 134-142.	1.2	81
50	Multiple roles of prolyl residues in structure and folding 1 1Edited by C. Robert Matthews. Journal of Molecular Biology, 2000, 301, 737-747.	2.0	80
51	Protein Conformational Stability Probed by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Journal of the American Chemical Society, 2000, 122, 495-500.	6.6	77
52	Membrane-bound conformation of a signal peptide: A transferred nuclear Overhauser effect analysis. Biochemistry, 1993, 32, 13991-13999.	1.2	76
53	Intrinsic tryptophans of CRABPI as probes of structure and folding. Protein Science, 1996, 5, 1108-1117.	3.1	75
54	Domain Interactions in E. coli SRP: Stabilization of M Domain by RNA Is Required for Effective Signal Sequence Modulation of NG Domain. Molecular Cell, 1997, 1, 79-87.	4.5	75

#	Article	IF	CITATIONS
55	FoldEco: A Model for Proteostasis in E.Âcoli. Cell Reports, 2012, 1, 265-276.	2.9	72
56	Basis of Substrate Binding by the Chaperonin GroELâ€. Biochemistry, 1999, 38, 12537-12546.	1.2	66
57	Compatibility of .beta and .gammaturn features with a peptide backbone modification: synthesis and conformational analysis of a model cyclic pseudopentapeptide. Journal of the American Chemical Society, 1986, 108, 825-831.	6.6	65
58	Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Biochemical Journal, 2019, 476, 1653-1677.	1.7	65
59	Direct Comparison of a Stable Isolated Hsp70 Substrate-binding Domain in the Empty and Substrate-bound States. Journal of Biological Chemistry, 2006, 281, 1605-1611.	1.6	63
60	Role of Hsp70 ATPase Domain Intrinsic Dynamics and Sequence Evolution in Enabling its Functional Interactions with NEFs. PLoS Computational Biology, 2010, 6, e1000931.	1.5	60
61	Aggregation of a Slow-Folding Mutant of a β-Clam Protein Proceeds through a Monomeric Nucleusâ€. Biochemistry, 2005, 44, 7266-7274.	1.2	59
62	Conserved, Disordered C Terminus of DnaK Enhances Cellular Survival upon Stress and DnaK in Vitro Chaperone Activity. Journal of Biological Chemistry, 2011, 286, 31821-31829.	1.6	59
63	Interior turns in globular proteins. Nature, 1983, 304, 654-657.	13.7	58
64	Conformation of a peptide solubilizate in a reversed micelle water pool. Journal of the American Chemical Society, 1984, 106, 3648-3652.	6.6	58
65	Cavity formation before stable hydrogen bonding in the folding of a β-clam protein. Nature Structural and Molecular Biology, 1997, 4, 883-886.	3.6	58
66	In-cell Aggregation of a Polyglutamine-containing Chimera Is a Multistep Process Initiated by the Flanking Sequence. Journal of Biological Chemistry, 2007, 282, 36736-36743.	1.6	58
67	Effects of Osmolytes on Protein Folding and Aggregation in Cells. Methods in Enzymology, 2007, 428, 355-372.	0.4	57
68	Rett Syndrome-causing Mutations in Human MeCP2 Result in Diverse Structural Changes That Impact Folding and DNA Interactions. Journal of Biological Chemistry, 2008, 283, 20523-20534.	1.6	57
69	Spin trapping in heterogeneous electron transfer processes. Canadian Journal of Chemistry, 1982, 60, 1621-1636.	0.6	55
70	Biophysical studies of signal peptides: Implications for signal sequence functions and the involvement of lipid in protein export. Journal of Bioenergetics and Biomembranes, 1990, 22, 213-232.	1.0	55
71	Extended Polyglutamine Tracts Cause Aggregation and Structural Perturbation of an Adjacent β Barrel Protein. Journal of Biological Chemistry, 2006, 281, 12959-12967.	1.6	55
72	Dynamic local unfolding in the serpin α-1 antitrypsin provides a mechanism for loop insertion and polymerization. Nature Structural and Molecular Biology, 2011, 18, 222-226.	3.6	54

#	Article	IF	CITATIONS
73	Probing the folding pathway of a β-clam protein with single-tryptophan constructs. Folding & Design, 1998, 3, 401-412.	4.5	53
74	The Hsp70 interdomain linker is a dynamic switch that enables allosteric communication between two structured domains. Journal of Biological Chemistry, 2017, 292, 14765-14774.	1.6	53
75	Key features of an Hsp70 chaperone allosteric landscape revealed by ion-mobility native mass spectrometry and double electron-electron resonance. Journal of Biological Chemistry, 2017, 292, 8773-8785.	1.6	51
76	The structure of <i>Escherichia coli</i> heat-stable enterotoxin b by nuclear magnetic resonance and circular dichroism. Protein Science, 1995, 4, 1718-1729.	3.1	50
77	Design of biologically active, conformationally constrained GnRH antagonists. Proteins: Structure, Function and Bioinformatics, 1990, 8, 295-304.	1.5	49
78	Challenges and dreams: physics of weak interactions essential to life. Molecular Biology of the Cell, 2014, 25, 3474-3477.	0.9	49
79	A well-defined amphipathic conformation for the calcium-free cyclic lipopeptide antibiotic, daptomycin, in aqueous solution. Biopolymers, 2005, 80, 374-385.	1.2	46
80	Cross-Strand Split Tetra-Cys Motifs as Structure Sensors in a β-Sheet Protein. Chemistry and Biology, 2008, 15, 1104-1115.	6.2	46
81	Nuclear magnetic resonance analysis and conformational characterization of a cyclic decapeptide antagonist of gonadotropin-releasing hormone. Biochemistry, 1987, 26, 2642-2656.	1.2	45
82	Dynamics of Cellular Retinoic Acid Binding Protein I on Multiple Time Scales with Implications for Ligand Bindingâ€. Biochemistry, 2000, 39, 9119-9129.	1.2	45
83	Crystal structures, molecular conformations, infrared spectra, and carbon-13 NMR spectra of methylproline peptides in the solid state. Journal of the American Chemical Society, 1983, 105, 6609-6614.	6.6	43
84	Conformational analysis of a cyclic pentapeptide by one- and two-dimensional nuclear Overhauser effect spectroscopy. Journal of the American Chemical Society, 1985, 107, 1400-1407.	6.6	43
85	Unfolding dynamics of aβ-sheet protein studied by mass spectrometry. Journal of Mass Spectrometry, 1999, 34, 1289-1295.	0.7	42
86	Natural polypeptide scaffolds: β-sheets, β-turns, and β-hairpins. Biopolymers, 2006, 84, 13-22.	1.2	41
87	Dehydrophenylalanine as the i + 2th residue of a .beta. turn: synthesis and conformational analysis of cyclo(Gly-ProDELTA.z-Phe-D-Ala-Pro) and cyclo(Gly-Pro-D-Phe-D-Ala-Pro). Journal of the American Chemical Society, 1985, 107, 3349-3350.	6.6	40
88	1H and 15N resonance assignments and secondary structure of cellular retinoic acid-binding protein with and without bound ligand. Journal of Biomolecular NMR, 1994, 4, 741-760.	1.6	39
89	Individual and Collective Contributions of Chaperoning and Degradation to Protein Homeostasis in E.Âcoli. Cell Reports, 2015, 11, 321-333.	2.9	39
90	Conformational analysis of a highly potent, constrained gonadotropin-releasing hormone antagonist. 1. Nuclear magnetic resonance. Journal of the American Chemical Society, 1992, 114, 2852-2859.	6.6	38

#	Article	IF	CITATIONS
91	GroEL–Substrate Interactions. Cell, 2000, 100, 193-196.	13.5	38
92	Allosteric landscapes of eukaryotic cytoplasmic Hsp70s are shaped by evolutionary tuning of key interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11970-11975.	3.3	38
93	Functional Signal Peptides Bind a Soluble N-terminal Fragment of SecA and Inhibit Its ATPase Activity. Journal of Biological Chemistry, 2001, 276, 19648-19655.	1.6	36
94	Evolutionary coupling of structural and functional sequence information in the intracellular lipid-binding protein family. Proteins: Structure, Function and Bioinformatics, 2006, 63, 373-384.	1.5	35
95	Sequence and structural analysis of cellular retinoic acid-binding proteins reveals a network of conserved hydrophobic interactions. Proteins: Structure, Function and Bioinformatics, 2003, 54, 179-194.	1.5	34
96	The Conformation of a Signal Peptide Bound by Escherichia coli Preprotein Translocase SecA. Journal of Biological Chemistry, 2005, 280, 32753-32760.	1.6	33
97	Role of Local Sequence in the Folding of Cellular Retinoic Acid Binding Protein I:  Structural Propensities of Reverse Turns. Biochemistry, 2003, 42, 7976-7985.	1.2	32
98	Site-specific Fluorescent Labeling of Poly-histidine Sequences Using a Metal-chelating Cysteine. Chemical Biology and Drug Design, 2007, 69, 31-40.	1.5	31
99	Crystal structure of cyclo(Gly1-L-Pro2-D-Phe3-L-Ala4-L-Pro5): a cyclic pentapeptide with a Gly-L-Pro .delta. turn. Journal of the American Chemical Society, 1988, 110, 5157-5161.	6.6	28
100	Conformational analysis of a highly potent dicyclic gonadotropin-releasing hormone antagonist by nuclear magnetic resonance and molecular dynamics. Journal of Medicinal Chemistry, 1993, 36, 3265-3273.	2.9	28
101	Local interactions in a Schellman motif dictate interhelical arrangement in a protein fragment. Folding & Design, 1997, 2, 211-222.	4.5	27
102	Mapping the Signal Sequence-binding Site on SRP Reveals a Significant Role for the NG Domain. Journal of Biological Chemistry, 2002, 277, 46763-46768.	1.6	27
103	Delicate Balance between Functionally Required Flexibility and Aggregation Risk in a β-Rich Protein. Biochemistry, 2013, 52, 8843-8854.	1.2	26
104	Reduced tendency to form a .beta. turn in peptides from the P22 tailspike protein correlates with a temperature-sensitive folding defect. Biochemistry, 1990, 29, 9765-9771.	1.2	25
105	The Role of Aromatic–Aromatic Interactions in Strand–Strand Stabilization of β-Sheets. Journal of Molecular Biology, 2013, 425, 3522-3535.	2.0	25
106	Functionally Significant Mobile Regions of Escherichia coli SecA ATPase Identified by NMR. Journal of Biological Chemistry, 2002, 277, 50985-50990.	1.6	24
107	Its Preferential Interactions with Biopolymers Account for Diverse Observed Effects of Trehalose. Biophysical Journal, 2015, 109, 144-153.	0.2	24
108	Cellular folding pathway of a metastable serpin. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6484-6489.	3.3	24

#	Article	IF	CITATIONS
109	Crystal and solution structures of cyclo(Ala-Pro-Gly-D-Phe-Pro): a new type of cyclic pentapeptide which undergoes cis-trans isomerization of the Ala-Pro bond. Journal of the American Chemical Society, 1985, 107, 3321-3327.	6.6	22
110	Use of synthetic signal sequences to explore the protein export machinery. Biopolymers, 2008, 90, 307-319.	1.2	22
111	The Proteome Folding Problem and Cellular Proteostasis. Journal of Molecular Biology, 2021, 433, 167197.	2.0	22
112	Impact of a micellar environment on the conformations of two cyclic pentapeptides. Biopolymers, 1992, 32, 1741-1754.	1.2	20
113	Electrophysiological Studies in Xenopus Oocytes for the Opening of Escherichia coli SecA-Dependent Protein-Conducting Channels. Journal of Membrane Biology, 2006, 214, 103-113.	1.0	19
114	Selective promiscuity in the binding of <i>E. coli</i> Hsp70 to an unfolded protein. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
115	Determination of proline ring nonplanarity from proton spin-spin coupling constants: applications to two cyclic pentapeptides. Journal of the American Chemical Society, 1982, 104, 572-576.	6.6	16
116	A Novel Conformation in a Highly Potent, Constrained Gonadotropin-Releasing Hormone Antagonist. Journal of the American Chemical Society, 1996, 118, 970-976.	6.6	16
117	Molecular chaperones: Clamps for the Clps?. Current Biology, 1998, 8, R464-R467.	1.8	16
118	Ligand-promoted protein folding by biased kinetic partitioning. Nature Chemical Biology, 2017, 13, 369-371.	3.9	15
119	Local sequence information in cellular retinoic acid-binding protein I: Specific residue roles in β-turns*. Biopolymers, 2003, 71, 638-651.	1.2	14
120	Segmental isotopic labeling of the Hsp70 molecular chaperone DnaK using expressed protein ligation. Biopolymers, 2010, 94, 742-752.	1.2	14
121	Early Folding Events Protect Aggregation-Prone Regions of a Î ² -Rich Protein. Structure, 2013, 21, 476-485.	1.6	14
122	How bacteria survive an acid trip. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5279-5280.	3.3	14
123	How the Protein Data Bank changed biology: An introduction to the JBC Reviews thematic series, part 1. Journal of Biological Chemistry, 2021, 296, 100608.	1.6	14
124	Conformational comparison of cyclic peptide and pseudopeptide structures with intramolecular hydrogen bonding. Biopolymers, 1983, 22, 147-151.	1.2	13
125	Solution conformations of two flexible cyclic pentapeptides:cyclo(Gly-Pro-D-Phe-Gly-Ala) andcyclo(Gly-Pro-D-Phe-Gly-Val). Biopolymers, 1992, 32, 1713-1725.	1.2	13
126	Exploring the interactions between signal sequences and <i>E. coli</i> SRP by two distinct and complementary crosslinking methods. Biopolymers, 2009, 92, 201-211.	1.2	13

#	Article	IF	CITATIONS
127	The Cost of Exposing a Hydrophobic Loop and Implications for the Functional Role of 4.5 S RNA in the Escherichia coli Signal Recognition Particle. Journal of Biological Chemistry, 2001, 276, 19327-19331.	1.6	12
128	Expression and Purification of Active Recombinant Human Alpha-1 Antitrypsin (AAT) from Escherichia coli. Methods in Molecular Biology, 2017, 1639, 195-209.	0.4	12
129	Combined use of molecular dynamics simulations and NMR to explore peptide bond isomerization and multiple intramolecular hydrogen-bonding possibilities in a cyclic pentapeptide,cyclo (Cly-Pro-D-Phe-Cly-Val). Biopolymers, 1992, 32, 1727-1739.	1.2	11
130	JBC is on a mission to facilitate scientific discovery. Journal of Biological Chemistry, 2017, 292, 6853-6854.	1.6	11
131	On the costs of scientific publishing. Journal of Biological Chemistry, 2017, 292, 16395-16396.	1.6	10
132	Interfacial spin trapping in model membrane systems. Biochemical and Biophysical Research Communications, 1981, 102, 1350-1357.	1.0	9
133	Native structural propensity in cellular retinoic acid-binding protein I 64–88: the role of locally encoded structure in the folding of a β-barrel protein. Biophysical Chemistry, 2002, 100, 421-436.	1.5	9
134	Physics-based modeling provides predictive understanding of selectively promiscuous substrate binding by Hsp70 chaperones. PLoS Computational Biology, 2021, 17, e1009567.	1.5	9
135	Signal Peptides Bind and Aggregate RNA. Journal of Biological Chemistry, 2001, 276, 12222-12227.	1.6	8
136	Disorder breathes life into a DEAD motor. Nature Structural and Molecular Biology, 2006, 13, 566-569.	3.6	8
137	Proper secretion of the serpin antithrombin relies strictly on thiol-dependent quality control. Journal of Biological Chemistry, 2019, 294, 18992-19011.	1.6	8
138	JBC's New Year's resolutions: Check them off!. Journal of Biological Chemistry, 2017, 292, 21705-21706.	1.6	7
139	First glimpses of a chaperonin-bound folding intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13715-13716.	3.3	6
140	Finding the Fittest Fold: Using the Evolutionary Record to Design New Proteins. Cell, 2005, 122, 832-834.	13.5	6
141	The Structure of Escherichia coli Signal Recognition Particle Revealed by Scanning Transmission Electron Microscopy. Molecular Biology of the Cell, 2006, 17, 5063-5074.	0.9	6
142	A new twist for an Hsp70 chaperone. Nature Structural Biology, 2002, 9, 406-408.	9.7	5
143	How One Bad Protein Spoils the Barrel: Structural Details of β2-Microglobulin Amyloidogenicity. Molecular Cell, 2011, 41, 129-131.	4.5	5
144	A career pathway in protein folding: From model peptides to postreductionist protein science. Protein Science, 2011, 20, 783-790.	3.1	5

#	Article	IF	CITATIONS
145	The Journal of Biological Chemistry: 2016 Onward. Journal of Biological Chemistry, 2016, 291, 15406-15407.	1.6	5
146	The Herbert Tabor Best Paper Awards: Celebrating young authors who contribute top content to JBC. Journal of Biological Chemistry, 2017, 292, 17576.	1.6	5
147	ASBMB and JBC: A truly synergistic relationship. Journal of Biological Chemistry, 2017, 292, 9857.	1.6	5
148	Kinetic versus thermodynamic control of mutational effects on protein homeostasis: A perspective from computational modeling and experiment. Protein Science, 2019, 28, 1324-1339.	3.1	5
149	Spectroscopic studies of a hydrophobic peptide in membranelike environments. Biopolymers, 1983, 22, 381-385.	1.2	4
150	Caught in the Act. Molecular Cell, 2002, 9, 3-5.	4.5	4
151	Chapter 3 A Fluorescent Window Into Protein Folding and Aggregation in Cells. Methods in Cell Biology, 2008, 89, 59-70.	0.5	4
152	A Method for Direct Measurement of Protein Stability In Vivo. Methods in Molecular Biology, 2009, 490, 165-178.	0.4	4
153	The Herbert Tabor Young Investigator Awards: Meet the awardees!. Journal of Biological Chemistry, 2018, 293, 3468-3469.	1.6	4
154	Faster publication advances your science: The three R's. Journal of Biological Chemistry, 2020, 295, 672.	1.6	4
155	Defining the structure of the substrate-free state of the DnaK molecular chaperone. Biochemical Society Symposia, 2001, 68, 69-82.	2.7	4
156	There are more Hsp90 chaperone mechanisms in heaven and earth, dear reader, than are dreamt of in your philosophy. Molecular Cell, 2022, 82, 1403-1404.	4.5	4
157	Molecular Chaperones: Panning for chaperone-binding peptides. Current Biology, 1994, 4, 173-174.	1.8	3
158	The Molecular Dating Game: An Antibody Heavy Chain Hangs Loose with a Chaperone while Waiting for Its Life Partner. Molecular Cell, 2009, 34, 635-636.	4.5	3
159	What Happens When You Submit a Paper to JBC?. Journal of Biological Chemistry, 2017, 292, 1535-1537.	1.6	3
160	Celebrating and cultivating excellent peer review at JBC. Journal of Biological Chemistry, 2019, 294, 13850-13851.	1.6	3
161	The data must be accessible to all. Journal of Biological Chemistry, 2020, 295, 4371.	1.6	3
162	Ring opening of cyclic pentapeptides by electron impact mass spectrometry: correlation with peptide bond nonplanarity. Journal of the American Chemical Society, 1989, 111, 5487-5488.	6.6	2

#	Article	IF	CITATIONS
163	You Got to Know When to Hold (or Unfold) †̃Em…. Molecular Cell, 2012, 48, 3-4.	4.5	2
164	Division of Labor: ER-Resident BiP Co-Chaperones Match Substrates to Fates Based on Specific Binding Sequences. Molecular Cell, 2016, 63, 721-723.	4.5	2
165	Happy centennial birthday to Herb Tabor, pillar of JBC. Journal of Biological Chemistry, 2018, 293, 18803.	1.6	2
166	Local and nonâ€local topological information in the denatured state ensemble of a βâ€barrel protein. Protein Science, 2018, 27, 2062-2072.	3.1	2
167	Looking back at the last two years: Coming home to JBC. Journal of Biological Chemistry, 2018, 293, 11254.	1.6	2
168	Introducing JBC Reviews. Journal of Biological Chemistry, 2019, 294, 389.	1.6	2
169	Welcome to a new year and a new OPEN ACCESS JBC!. Journal of Biological Chemistry, 2021, 296, 100199.	1.6	2
170	How the Protein Data Bank changed biology: An introduction to the JBC Reviews thematic series, part 2. Journal of Biological Chemistry, 2021, 296, 100748.	1.6	2
171	The Data Must Be Accessible to All. Molecular and Cellular Proteomics, 2020, 19, 569-570.	2.5	2
172	Biophysical studies of recognition sequences for targeting and folding. Antonie Van Leeuwenhoek, 1992, 61, 93-99.	0.7	1
173	A new journal from ASBMB. Journal of Biological Chemistry, 2018, 293, 6212-6213.	1.6	1
174	For the Sake of Science. Molecular and Cellular Proteomics, 2019, 18, 406-407.	2.5	1
175	For the sake of science. Journal of Lipid Research, 2019, 60, 719-720.	2.0	1
176	Celebrating science's next generation. Journal of Biological Chemistry, 2019, 294, 3323-3324.	1.6	1
177	Celebrating the scientific legacy of Herbert Tabor. Journal of Biological Chemistry, 2019, 294, 1635-1637.	1.6	1
178	For the sake of science. Journal of Biological Chemistry, 2019, 294, 2976-5951.	1.6	1
179	In JBC we trust. Journal of Biological Chemistry, 2020, 295, 13409.	1.6	1
180	Opening ASBMB publications freely to all. Journal of Biological Chemistry, 2020, 295, 7814-7815.	1.6	1

#	Article	IF	CITATIONS
181	Opening ASBMB publications freely to all. Molecular and Cellular Proteomics, 2020, 19, 914-915.	2.5	1
182	A multipronged approach to the mechanism of allostery in Hsp70 chaperones. FASEB Journal, 2006, 20, A964.	0.2	1
183	Hsp70 Molecular Chaperones: Versatile Modular Nanomachines that Mediate Multiple Biological Functions. , 2016, , 1-48.		1
184	The data must be accessible to all. Journal of Lipid Research, 2020, 61, 465.	2.0	1
185	The Power of Physical Chemistry Unleashed on Proteins. Journal of Physical Chemistry Letters, 2011, 2, 327-328.	2.1	Ο
186	A Loyal Friend of ASBMB and JBC: Howard Schachman, 1918–2016. Journal of Biological Chemistry, 2016, 291, 19724.	1.6	0
187	Dedicated to a peptide chemist of few words and immense impact: Louis A. Carpino. Peptide Science, 2020, 112, e24185.	1.0	Ο
188	Reflecting on an incredible journey with JBC. Journal of Biological Chemistry, 2021, 297, 100875.	1.6	0
189	2020 Herbert Tabor Early Career Investigator Awards: Call for nominations. Journal of Biological Chemistry, 2019, 294, 13526.	1.6	Ο
190	Wish you were here: Meetings, no meetings, meeting reports. Journal of Biological Chemistry, 2020, 295, 5534.	1.6	0
191	Opening ASBMB publications freely to all. Journal of Lipid Research, 2020, 61, 969-970.	2.0	Ο
192	2021 JBC Herbert Tabor Early Career Investigator Awards: Call for nominations. Journal of Biological Chemistry, 2020, 295, 13697.	1.6	0
193	We mark the passing of two giants of JBC. Journal of Biological Chemistry, 2020, 295, 15173.	1.6	0
194	Elucidating the Role of the Hsc70 Chaperone System in SNARE Complex Formation. FASEB Journal, 2022, 36, .	0.2	0
195	Investigating the Determinants of Substrate Binding Orientation within the <i>E. coli</i> Hsp70 Chaperone Protein. FASEB Journal, 2022, 36, .	0.2	Ο