
Victor Rizzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5126843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Flow-induced endothelial mitochondrial remodeling mitigates mitochondrial reactive oxygen species production and promotes mitochondrial DNA integrity in a p53-dependent manner. Redox Biology, 2022, 50, 102252.	9.0	11
2	Endothelial cell specific knockout of caveolinâ€1 attenuates AngII/BAPNâ€induced vascular remodeling in mice. FASEB Journal, 2022, 36, .	0.5	0
3	Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm. Cardiovascular Research, 2021, 117, 971-982.	3.8	59
4	Interaction of the Joining Region in Junctophilin-2 With the L-Type Ca ²⁺ Channel Is Pivotal for Cardiac Dyad Assembly and Intracellular Ca ²⁺ Dynamics. Circulation Research, 2021, 128, 92-114.	4.5	45
5	Transduction Efficiency of Adenovirus Vectors in Endothelial Cells and Vascular Smooth Muscle Cells. Journal of Cardiovascular Pharmacology, 2020, 75, 603-607.	1.9	5
6	Endothelial cellâ€derived extracellular vesicles alter vascular smooth muscle cell phenotype through highâ€mobility group box proteins. Journal of Extracellular Vesicles, 2020, 9, 1781427.	12.2	45
7	Mitochondrial Fission Mediates Endothelial Inflammation. Hypertension, 2020, 76, 267-276.	2.7	59
8	Understanding Angiotensin II Type 1 Receptor Signaling in Vascular Pathophysiology. Hypertension, 2018, 71, 804-810.	2.7	136
9	Angiotensin II- and Alzheimer-Type Cardiovascular Aging. Circulation Research, 2018, 123, 651-653.	4.5	16
10	Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiological Reviews, 2018, 98, 1627-1738.	28.8	673
11	Caveolin-1 Deletion Prevents Hypertensive Vascular Remodeling Induced by Angiotensin II. Hypertension, 2017, 69, 79-86.	2.7	45
12	AT1 receptor signaling pathways in the cardiovascular system. Pharmacological Research, 2017, 125, 4-13.	7.1	157
13	HIF1α in aortic aneurysms and beyond. Clinical Science, 2017, 131, 621-623.	4.3	0
14	Vascular ADAM17 (a Disintegrin and Metalloproteinase Domain 17) Is Required for Angiotensin II/β-Aminopropionitrile–Induced Abdominal Aortic Aneurysm. Hypertension, 2017, 70, 959-963.	2.7	42
15	MicroRNA-155 Deficiency Leads to Decreased Atherosclerosis, Increased White Adipose Tissue Obesity, and Non-alcoholic Fatty Liver Disease. Journal of Biological Chemistry, 2017, 292, 1267-1287.	3.4	107
16	Microparticle-Induced Activation of the Vascular Endothelium Requires Caveolin-1/Caveolae. PLoS ONE, 2016, 11, e0149272.	2.5	26
17	Vascular ADAM17 as a Novel Therapeutic Target in Mediating Cardiovascular Hypertrophy and Perivascular Fibrosis Induced by Angiotensin II. Hypertension, 2016, 68, 949-955.	2.7	69
18	Intracoronary Cytoprotective Gene Therapy. Journal of the American College of Cardiology, 2015, 66, 139-153.	2.8	58

VICTOR RIZZO

#	Article	IF	CITATIONS
19	Epidermal growth factor receptor inhibitor protects against abdominal aortic aneurysm in a mouse model. Clinical Science, 2015, 128, 559-565.	4.3	38
20	Shear Stress Activates eNOS at the Endothelial Apical Surface Through β1 Containing Integrins and Caveolae. Cellular and Molecular Bioengineering, 2013, 6, 346-354.	2.1	42
21	Volume overload induces differential spatiotemporal regulation of myocardial soluble guanylyl cyclase in eccentric hypertrophy and heart failure. Journal of Molecular and Cellular Cardiology, 2013, 60, 72-83.	1.9	16
22	Fluid Shear Stress induces the Clustering of Heparan Sulfate via Mobility of Glypicanâ€1 in Lipid Rafts. FASEB Journal, 2013, 27, 469.1.	0.5	0
23	Caveolae regulate nitroxidative signaling via localized nitration of Srcâ€family kinase in endothelial cells. FASEB Journal, 2013, 27, 1143.6.	0.5	0
24	Role of Caveolae in the development of abdominal aortic aneurysms. FASEB Journal, 2013, 27, 379.6.	0.5	0
25	A Caveolae-Targeted L-Type Ca ²⁺ Channel Antagonist Inhibits Hypertrophic Signaling Without Reducing Cardiac Contractility. Circulation Research, 2012, 110, 669-674.	4.5	112
26	Interleukin-19 (IL-19) Induces Heme Oxygenase-1 (HO-1) Expression and Decreases Reactive Oxygen Species in Human Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 2012, 287, 2477-2484.	3.4	40
27	Metoprolol Enhances Caveolae-Localized NO-cGMP Signaling in Volume-Overloaded Hearts. Journal of Cardiac Failure, 2012, 18, S1-S2.	1.7	0
28	Caveolin-1 negatively regulates a metalloprotease-dependent epidermal growth factor receptor transactivation by angiotensin II. Journal of Molecular and Cellular Cardiology, 2011, 50, 545-551.	1.9	43
29	Racial differences in the responses to shear stress in human umbilical vein endothelial cells. Vascular Health and Risk Management, 2011, 7, 425.	2.3	34
30	p190 RhoGTPase-Activating Protein Links the β1 Integrin/Caveolin-1 Mechanosignaling Complex to RhoA and Actin Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 376-383.	2.4	57
31	Caveolinâ€∎ negatively regulates a metalloproteaseâ€dependent EGF receptor transactivation by angiotensin II. FASEB Journal, 2010, 24, 599.3.	0.5	0
32	A physiologically realistic in vitro model of microvascular networks. Biomedical Microdevices, 2009, 11, 1051-1057.	2.8	80
33	Lights, camera, actin! The cytoskeleton takes center stage in mechanotransduction. Focus on "Mapping the dynamics of shear stress-induced structural changes in endothelial cells.â€: American Journal of Physiology - Cell Physiology, 2007, 293, C1771-C1772.	4.6	3
34	Kininostatin Associates With Membrane Rafts and Inhibits αvβ3 Integrin Activation in Human Umbilical Vein Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1968-1975.	2.4	21
35	Participation of caveolae in β1 integrin-mediated mechanotransduction. Biochemical and Biophysical Research Communications, 2007, 358, 626-631.	2.1	65
36	Participation of caveolae in betaâ€1 integrinâ€mediated mechanotransduction. FASEB Journal, 2007, 21, A752.	0.5	0

VICTOR RIZZO

#	Article	IF	CITATIONS
37	Lipid rafts mediate H 2 O 2 prosurvival effects in cultured endothelial cells. FASEB Journal, 2006, 20, 1501-1503.	0.5	112
38	TNFα potentiates proteinâ€ŧyrosine nitration through activation of eNOS and NADPH oxidase localized in caveolae of bovine aortic endothelial cells. FASEB Journal, 2006, 20, A726.	0.5	0
39	Lipid rafts mediate H2O2 prosurvival effects in cultured endothelial cells. FASEB Journal, 2006, 20, A1160.	0.5	0
40	In Situ Flow Activates Endothelial Nitric Oxide Synthase in Luminal Caveolae of Endothelium with Rapid Caveolin Dissociation and Calmodulin Association. Journal of Biological Chemistry, 1998, 273, 34724-34729.	3.4	268
41	Rapid Mechanotransduction in Situ at the Luminal Cell Surface of Vascular Endothelium and Its Caveolae. Journal of Biological Chemistry, 1998, 273, 26323-26329.	3.4	159
42	Degranulation of Mast Cells in the Chick Chorioallantoic Membrane Does Not Increase Macromolecular Extravasation During Normal Angiogenesis. Microcirculation, 1996, 3, 387-393.	1.8	2
43	Capillary Sprouts Restrict Macromolecular Extravasation during Normal Angiogenesis in the Chick Chorioallantoic Membrane. Microvascular Research, 1996, 52, 47-57.	2.5	9
44	Mast Cell Activation Accelerates the Normal Rate of Angiogenesis in the Chick Chorioallantoic Membrane. Microvascular Research, 1996, 52, 245-257.	2.5	28
45	Ontogeny of Microvascular Permeability to Macromolecules in the Chick Chorioallantoic Membrane during Normal Angiogenesis. Microvascular Research, 1995, 49, 49-63.	2.5	31
46	Differentiation of the microvascular endothelium during early angiogenesis and respiratory onset in the chick chorioallantoic membrane. Tissue and Cell, 1995, 27, 159-166.	2.2	18
47	Macromolecular selectivity of chick chorioallantoic membrane microvessels during normal angiogenesis and endothelial differentiation. Tissue and Cell, 1993, 25, 847-856.	2.2	34
48	The Microvascular Unit of the 6-Day Chick Chorioallantoic Membrane: A Fluorescent Confocal Microscopic and Ultrastructural Morphometric Analysis of Endothelial Permselectivity. Microvascular Research, 1993, 46, 320-332.	2.5	21