Maria João Rosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5126755/publications.pdf

Version: 2024-02-01

57 papers 2,068 citations

218381 26 h-index 233125 45 g-index

58 all docs 58 docs citations

58 times ranked 2019 citing authors

#	Article	IF	Citations
1	Key Factors for Activated Carbon Adsorption of Pharmaceutical Compounds from Wastewaters: A Multivariate Modelling Approach. Water (Switzerland), 2022, 14, 166.	1.2	14
2	Understanding the bioaccumulation of pharmaceutical active compounds by clams Ruditapes decussatus exposed to a UWWTP discharge. Environmental Research, 2022, 208, 112632.	3.7	13
3	A Treatment Reliability-Based Method for Supporting Infrastructure Asset Management of Wastewater Treatment Plants. Water (Switzerland), 2022, 14, 1106.	1.2	4
4	Activated carbons in full-scale advanced wastewater treatment. , 2022, , 433-475.		2
5	A Comprehensive Derivation and Application of Reference Values for Benchmarking the Energy Performance of Activated Sludge Wastewater Treatment. Water (Switzerland), 2022, 14, 1620.	1.2	6
6	Engineered pine nut shell derived activated carbons for improved removal of recalcitrant pharmaceuticals in urban wastewater treatment. Journal of Hazardous Materials, 2022, 437, 129319.	6.5	11
7	Powdered activated carbon full-scale addition to the activated sludge reactor of a municipal wastewater treatment plant: Pharmaceutical compounds control and overall impact on the process. Journal of Water Process Engineering, 2022, 49, 102975.	2.6	9
8	Operational performance and cost analysis of PAC/ceramic MF for drinking water production: Exploring treatment capacity as a new indicator for performance assessment and optimization. Separation and Purification Technology, 2021, 255, 117443.	3.9	8
9	Adsorption/Coagulation/Ceramic Microfiltration for Treating Challenging Waters for Drinking Water Production. Membranes, 2021, 11, 91.	1.4	14
10	Occurrence and seasonality of pharmaceutical compounds in urban wastewaters in two Portuguese regions. Urban Water Journal, 2021, 18, 465-478.	1.0	11
11	An Update on Wastewater Multi-Resistant Bacteria: Identification of Clinical Pathogens Such as Escherichia coli O25b:H4-B2-ST131-Producing CTX-M-15 ESBL and KPC-3 Carbapenemase-Producing Klebsiella oxytoca. Microorganisms, 2021, 9, 576.	1.6	10
12	To what extent may pharmaceuticals and pesticides be removed by PAC conventional addition to low-turbidity surface waters and what are the potential bottlenecks?. Journal of Water Process Engineering, 2021, 40, 101833.	2.6	14
13	Hybrid Process of Adsorption/Coagulation/Ceramic MF for Removing Pesticides in Drinking Water Treatmentâ€"Inline vs. Contact Tank PAC Dosing. Membranes, 2021, 11, 72.	1.4	5
14	A Practical Methodology for Forecasting the Impact of Changes in Influent Loads and Discharge Consents on Average Energy Consumption and Sludge Production by Activated Sludge Wastewater Treatment. Sustainability, 2021, 13, 12293.	1.6	2
15	Solar Light-Induced Methylene Blue Removal over TiO2/AC Composites and Photocatalytic Regeneration. Nanomaterials, 2021, 11, 3016.	1.9	11
16	Identification and Modelling of Chlorine Decay Mechanisms in Reclaimed Water Containing Ammonia. Sustainability, 2021, 13, 13548.	1.6	2
17	Pilot Studies and Cost Analysis of Hybrid Powdered Activated Carbon/Ceramic Microfiltration for Controlling Pharmaceutical Compounds and Organic Matter in Water Reclamation. Water (Switzerland), 2020, 12, 33.	1.2	21
18	Performance assessment of 23 wastewater treatment plants - a case study. Urban Water Journal, 2020, 17, 78-85.	1.0	11

#	Article	IF	Citations
19	Assessing the applicability of a new carob waste-derived powdered activated carbon to control pharmaceutical compounds in wastewater treatment. Science of the Total Environment, 2020, 743, 140791.	3.9	29
20	Atenolol removal by nanofiltration: a case-specific mass transfer correlation. Water Science and Technology, 2020, 81, 210-216.	1.2	12
21	The Development of a Framework for Assessing the Energy Efficiency in Urban Water Systems and Its Demonstration in the Portuguese Water Sector. Water (Switzerland), 2020, 12, 134.	1.2	12
22	Consumo de energia nos serviços urbanos de água em Portugal Continental. Resultados 2004-2017. Ãguas E ResÃduos, 2020, , 5-16.	0.1	0
23	Concentration Polarization in Ultrafiltration/Nanofiltration for the Recovery of Polyphenols from Winery Wastewaters. Membranes, 2018, 8, 46.	1.4	46
24	Estratégia para recuperação de fósforo de águas residuais urbanas. Ãguas E ResÃduos, 2017, , 38-50.	0.0	0
25	Tratamento de água com carvão ativado em pó/microfiltração cerâmica (PAC/MF) – quando e onde?. Ãguas E ResÃduos, 2017, , 17-29.	0.0	0
26	A comprehensive approach for diagnosing opportunities for improving the performance of a WWTP. Water Science and Technology, 2016, 74, 2935-2945.	1.2	9
27	Investigating PPCP Removal from Wastewater by Powdered Activated Carbon/Ultrafiltration. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	59
28	Performance indicators and indices of sludge management in urban wastewater treatment plants. Journal of Environmental Management, 2016, 184, 307-317.	3.8	16
29	Water reclamation with hybrid coagulation–ceramic microfiltration: first part of a long-term pilot study in Portugal. Journal of Water Reuse and Desalination, 2015, 5, 550-556.	1.2	8
30	Energy performance indicators of wastewater treatment: a field study with 17 Portuguese plants. Water Science and Technology, 2015, 72, 510-519.	1.2	59
31	How do the HSDM and Boyd's model compare for estimating intraparticle diffusion coefficients in adsorption processes. Adsorption, 2014, 20, 737-746.	1.4	137
32	A tool for a comprehensive assessment of treated wastewater quality. Journal of Environmental Management, 2014, 146, 400-406.	3.8	19
33	Translating removal efficiencies into operational performance indices of wastewater treatment plants. Water Research, 2014, 57, 202-214.	5.3	26
34	Modelling and understanding the competitive adsorption of microcystins and tannic acid. Water Research, 2013, 47, 5690-5699.	5.3	36
35	How does the adsorption of microcystins and anatoxin-a on nanofiltration membranes depend on their co-existence and on the water background matrix. Water Science and Technology, 2012, 66, 976-982.	1.2	3
36	Results of  PASt21' – the Portuguese initiative for performance assessment of water and wastewater treatment plants. Water Science and Technology: Water Supply, 2012, 12, 372-386.	1.0	11

#	Article	IF	CITATIONS
37	Comparing PAC/UF and conventional clarification with PAC for removing microcystins from natural waters. Desalination and Water Treatment, 2010, 16, 120-128.	1.0	7
38	Removal of microcystins by PAC/UF. Separation and Purification Technology, 2010, 71, 114-120.	3.9	64
39	Evaluation of cyanobacterial cells removal and lysis by ultrafiltration. Separation and Purification Technology, 2010, 70, 345-353.	3.9	74
40	A performance indicators system for urban wastewater treatment plants. Water Science and Technology, 2010, 62, 2398-2407.	1.2	41
41	Assessing PAC contribution to the NOM fouling control in PAC/UF systems. Water Research, 2010, 44, 1636-1644.	5.3	140
42	Investigating dissolved air flotation performance with cyanobacterial cells and filaments. Water Research, 2010, 44, 3337-3344.	5.3	64
43	Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosaPart II. The effect of water background organics. Separation and Purification Technology, 2007, 53, 126-134.	3.9	95
44	Neurotoxic and hepatotoxic cyanotoxins removal by nanofiltration. Water Research, 2006, 40, 2837-2846.	5.3	42
45	Integration of dissolved gas flotation and nanofiltration for M. aeruginosa and associated microcystins removal. Water Research, 2006, 40, 3612-3620.	5.3	29
46	The impact of the water background inorganic matrix on the natural organic matter removal by nanofiltration. Journal of Membrane Science, 2006, 279, 513-520.	4.1	32
47	The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC. Journal of Colloid and Interface Science, 2006, 299, 520-529.	5.0	80
48	Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa. Separation and Purification Technology, 2006, 52, 84-94.	3.9	150
49	Microcystins removal by nanofiltration membranes. Separation and Purification Technology, 2005, 46, 192-201.	3.9	61
50	The role of membrane charge on nanofiltration performance. Journal of Membrane Science, 2005, 265, 160-166.	4.1	262
51	pH adjustment for seasonal control of UF fouling by natural waters. Desalination, 2003, 151, 165-175.	4.0	38
52	Structure of water in asymmetric cellulose ester membranes $\hat{a} \in \text{``and ATR-FTIR study. Journal of Membrane Science, 1998, 138, 259-267.}$	4.1	64
53	Membrane surface characterisation by contact angle measurements using the immersed method. Journal of Membrane Science, 1997, 131, 167-180.	4.1	63
54	The role of ultrafiltration and nanofiltration on the minimisation of the environmental impact of bleached pulp effluents. Journal of Membrane Science, 1995, 102, 155-161.	4.1	35

Maria Joã£o Rosa

#	Article	IF	CITATIONS
55	Optical Polarizing Studies of Cellulose Acetate Membranes Prepared by Phase-Inversion. Molecular Crystals and Liquid Crystals, 1995, 258, 163-171.	0.3	4
56	Separation of organic solutes by membrane pressure-driven processes. Journal of Membrane Science, 1994, 89, 235-243.	4.1	37
57	Nanofiltration removal of chlorinated organic compounds from alkaline bleaching effluents in a pulp and paper plant. Water Research, 1992, 26, 1639-1643.	5.3	33