Isabel Sola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5126228/publications.pdf

Version: 2024-02-01

70 papers

10,803 citations

94415 37 h-index 95259 68 g-index

76 all docs

76 docs citations

76 times ranked 19194 citing authors

#	Article	IF	CITATIONS
1	The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nature Microbiology, 2020, 5, 536-544.	13.3	5,799
2	Continuous and Discontinuous RNA Synthesis in Coronaviruses. Annual Review of Virology, 2015, 2, 265-288.	6.7	525
3	Role of Severe Acute Respiratory Syndrome Coronavirus Viroporins E, 3a, and 8a in Replication and Pathogenesis. MBio, 2018, 9, .	4.1	248
4	Engineering a Replication-Competent, Propagation-Defective Middle East Respiratory Syndrome Coronavirus as a Vaccine Candidate. MBio, 2013, 4, e00650-13.	4.1	236
5	Sequence Motifs Involved in the Regulation of Discontinuous Coronavirus Subgenomic RNA Synthesis. Journal of Virology, 2004, 78, 980-994.	3.4	207
6	Construction of a Severe Acute Respiratory Syndrome Coronavirus Infectious cDNA Clone and a Replicon To Study Coronavirus RNA Synthesis. Journal of Virology, 2006, 80, 10900-10906.	3.4	198
7	Targeted Recombination Demonstrates that the Spike Gene of Transmissible Gastroenteritis Coronavirus Is a Determinant of Its Enteric Tropism and Virulence. Journal of Virology, 1999, 73, 7607-7618.	3.4	195
8	Biochemical Aspects of Coronavirus Replication and Virus-Host Interaction. Annual Review of Microbiology, 2006, 60, 211-230.	7.3	187
9	Coronavirus Nucleocapsid Protein Facilitates Template Switching and Is Required for Efficient Transcription. Journal of Virology, 2010, 84, 2169-2175.	3.4	171
10	Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses. PLoS Pathogens, 2016, 12, e1005982.	4.7	161
11	A conserved immunogenic and vulnerable site on the coronavirus spike protein delineated by cross-reactive monoclonal antibodies. Nature Communications, 2021, 12, 1715.	12.8	138
12	Molecular Basis of Coronavirus Virulence and Vaccine Development. Advances in Virus Research, 2016, 96, 245-286.	2.1	128
13	RNA-RNA and RNA-protein interactions in coronavirus replication and transcription. RNA Biology, 2011, 8, 237-248.	3.1	116
14	Coronavirus nucleocapsid protein is an RNA chaperone. Virology, 2007, 357, 215-227.	2.4	115
15	Role of Nucleotides Immediately Flanking the Transcription-Regulating Sequence Core in Coronavirus Subgenomic mRNA Synthesis. Journal of Virology, 2005, 79, 2506-2516.	3.4	112
16	Mutagenesis of Coronavirus nsp14 Reveals Its Potential Role in Modulation of the Innate Immune Response. Journal of Virology, 2016, 90, 5399-5414.	3.4	110
17	Adaptive Evolution of MERS-CoV to Species Variation in DPP4. Cell Reports, 2018, 24, 1730-1737.	6.4	108
18	Coronavirus Gene 7 Counteracts Host Defenses and Modulates Virus Virulence. PLoS Pathogens, 2011, 7, e1002090.	4.7	104

#	Article	IF	Citations
19	MERS-CoV 4b protein interferes with the NF- \hat{l}° B-dependent innate immune response during infection. PLoS Pathogens, 2018, 14, e1006838.	4.7	104
20	Coronavirus reverse genetic systems: Infectious clones and replicons. Virus Research, 2014, 189, 262-270.	2.2	100
21	Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology, 2003, 308, 13-22.	2.4	97
22	SARS-CoV-Encoded Small RNAs Contribute to Infection-Associated Lung Pathology. Cell Host and Microbe, 2017, 21, 344-355.	11.0	97
23	Transcription Regulatory Sequences and mRNA Expression Levels in the Coronavirus Transmissible Gastroenteritis Virus. Journal of Virology, 2002, 76, 1293-1308.	3.4	94
24	Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19. Nature, 2022, 605, 146-151.	27.8	82
25	Engineering the Transmissible Gastroenteritis Virus Genome as an Expression Vector Inducing Lactogenic Immunity. Journal of Virology, 2003, 77, 4357-4369.	3.4	81
26	Specific Secretion of Active Single-Chain Fv Antibodies into the Supernatants of Escherichia coli Cultures by Use of the Hemolysin System. Applied and Environmental Microbiology, 2000, 66, 5024-5029.	3.1	75
27	Engineering passive immunity in transgenic mice secreting virus-neutralizing antibodies in milk. Nature Biotechnology, 1998, 16, 349-354.	17.5	74
28	Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the purdue virus cluster. Virus Genes, 2001, 23, 105-118.	1.6	74
29	The Polypyrimidine Tract-Binding Protein Affects Coronavirus RNA Accumulation Levels and Relocalizes Viral RNAs to Novel Cytoplasmic Domains Different from Replication-Transcription Sites. Journal of Virology, 2011, 85, 5136-5149.	3.4	68
30	Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection. Science Advances, 2018, 4, eaas9667.	10.3	66
31	Host cell proteins interacting with the $3\hat{a}\in^2$ end of TGEV coronavirus genome influence virus replication. Virology, 2009, 391, 304-314.	2.4	63
32	Identification of a Coronavirus Transcription Enhancer. Journal of Virology, 2008, 82, 3882-3893.	3.4	61
33	Canonical and Noncanonical Autophagy as Potential Targets for COVID-19. Cells, 2020, 9, 1619.	4.1	60
34	Role of RNA chaperones in virus replication. Virus Research, 2009, 139, 253-266.	2.2	49
35	Transgenic Mice Secreting Coronavirus Neutralizing Antibodies into the Milk. Journal of Virology, 1998, 72, 3762-3772.	3.4	47
36	Alphacoronavirus Protein 7 Modulates Host Innate Immune Response. Journal of Virology, 2013, 87, 9754-9767.	3.4	41

#	Article	IF	Citations
37	Coronavirus derived expression systems. Journal of Biotechnology, 2001, 88, 183-204.	3.8	40
38	Vectored vaccines to protect against PRRSV. Virus Research, 2010, 154, 150-160.	2,2	37
39	Structure and Functional Relevance of a Transcription-Regulating Sequence Involved in Coronavirus Discontinuous RNA Synthesis. Journal of Virology, 2011, 85, 4963-4973.	3.4	37
40	An antibody derivative expressed from viral vectors passively immunizes pigs against transmissible gastroenteritis virus infection when supplied orally in crude plant extracts. Plant Biotechnology Journal, 2006, 4, 623-631.	8.3	36
41	An ACE2-blocking antibody confers broad neutralization and protection against Omicron and other SARS-CoV-2 variants of concern. Science Immunology, 2022, 7, eabp9312.	11.9	35
42	Cross-neutralization activity against SARS-CoV-2 is present in currently available intravenous immunoglobulins. Immunotherapy, 2020, 12, 1247-1255.	2.0	33
43	Long-Distance RNA-RNA Interactions in the Coronavirus Genome Form High-Order Structures Promoting Discontinuous RNA Synthesis during Transcription. Journal of Virology, 2013, 87, 177-186.	3.4	32
44	Virulence factors in porcine coronaviruses and vaccine design. Virus Research, 2016, 226, 142-151.	2.2	31
45	Use of virus vectors for the expression in plants of active full-length and single chain anti-coronavirus antibodies. Biotechnology Journal, 2006, 1, 1103-1111.	3.5	29
46	Transmissible Gastroenteritis Coronavirus Genome Packaging Signal Is Located at the $5\hat{a} \in \mathbb{Z}^2$ End of the Genome and Promotes Viral RNA Incorporation into Virions in a Replication-Independent Process. Journal of Virology, 2013, 87, 11579-11590.	3.4	27
47	Preclinical and randomized phase I studies of plitidepsin in adults hospitalized with COVID-19. Life Science Alliance, 2022, 5, e202101200.	2.8	26
48	Effects of Infection with Transmissible Gastroenteritis Virus on Concomitant Immune Responses to Dietary and Injected Antigens. Vaccine Journal, 2004, 11, 337-343.	2.6	22
49	Recombinant Chimeric Transmissible Gastroenteritis Virus (TGEV) - Porcine Epidemic Diarrhea Virus (PEDV) Virus Provides Protection against Virulent PEDV. Viruses, 2019, 11, 682.	3.3	22
50	In vitro and in vivo expression of foreign genes by transmissible gastroenteritis coronavirus-derived minigenomes. Journal of General Virology, 2002, 83, 567-579.	2.9	22
51	Contribution of Host miRNA-223-3p to SARS-CoV-Induced Lung Inflammatory Pathology. MBio, 2022, 13, e0313521.	4.1	22
52	Development of a Single-Cycle Infectious SARS-CoV-2 Virus Replicon Particle System for Use in Biosafety Level 2 Laboratories. Journal of Virology, 2022, 96, JVI0183721.	3.4	21
53	Gene N Proximal and Distal RNA Motifs Regulate Coronavirus Nucleocapsid mRNA Transcription. Journal of Virology, 2011, 85, 8968-8980.	3.4	18
54	Minimum Determinants of Transmissible Gastroenteritis Virus Enteric Tropism Are Located in the N-Terminus of Spike Protein. Pathogens, 2020, 9, 2.	2.8	15

#	Article	IF	CITATIONS
55	Genetically Engineered Live-Attenuated Middle East Respiratory Syndrome Coronavirus Viruses Confer Full Protection against Lethal Infection. MBio, 2021, 12, .	4.1	13
56	Recombinant dimeric small immunoproteins neutralize transmissible gastroenteritis virus infectivity efficiently in vitro and confer passive immunity in vivo. Journal of General Virology, 2007, 88, 187-195.	2.9	10
57	Middle East Respiratory Syndrome Coronavirus Gene 5 Modulates Pathogenesis in Mice. Journal of Virology, 2021, 95, .	3.4	10
58	Role of transcription regulatory sequence in regulation of gene expression and replication of porcine reproductive and respiratory syndrome virus. Veterinary Research, 2017, 48, 41.	3.0	9
59	Middle East respiratory syndrome coronavirus vaccine based on a propagation-defective RNA replicon elicited sterilizing immunity in mice. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2111075118.	7.1	9
60	Biochemical Aspects of Coronavirus Replication. Advances in Experimental Medicine and Biology, 2006, 581, 13-24.	1.6	6
61	Reprint of: Coronavirus reverse genetic systems: Infectious clones and replicons. Virus Research, 2014, 194, 67-75.	2.2	5
62	Viral PDZ Binding Motifs Influence Cell Behavior Through the Interaction with Cellular Proteins Containing PDZ Domains. Methods in Molecular Biology, 2021, 2256, 217-236.	0.9	5
63	MOV10 Helicase Interacts with Coronavirus Nucleocapsid Protein and Has Antiviral Activity. MBio, 2021, 12, e0131621.	4.1	5
64	Antigenic structures stably expressed by recombinant TGEV-derived vectors. Virology, 2014, 464-465, 274-286.	2.4	4
65	Expression of Transcriptional Units Using Transmissible Gastroenteritis Coronavirus Derived Minigenomes and Full-length cDNA Clones. Advances in Experimental Medicine and Biology, 2001, 494, 447-451.	1.6	3
66	Suitability of transiently expressed antibodies for clinical studies: product quality consistency at different production scales. MAbs, 2022, 14, 2052228.	5.2	3
67	Regulation of Coronavirus Transcription: Viral and Cellular Proteins Interacting with Transcription-Regulating Sequences. Advances in Experimental Medicine and Biology, 2006, 581, 31-35.	1.6	2
68	Interference of Coronavirus Infection by Expression of IgG or IgA Virus Neutralizing Antibodies. Advances in Experimental Medicine and Biology, 1998, 440, 665-674.	1.6	1
69	Gene expression, virulence and vaccine development in coronaviruses. Journal of Biotechnology, 2008, 136, S212-S213.	3.8	0
70	Foreword. Virus Research, 2014, 194, 1-2.	2.2	0