Elena Levi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5126100/publications.pdf Version: 2024-02-01

FLENALEVI

#	Article	IF	CITATIONS
1	Failure and Stabilization Mechanisms of Graphite Electrodes. Journal of Physical Chemistry B, 1997, 101, 2195-2206.	2.6	399
2	Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mnâ€Rich Cathodes for Liâ€lon Batteries. Advanced Energy Materials, 2016, 6, 1502398.	19.5	360
3	The challenge of developing rechargeable magnesium batteries. MRS Bulletin, 2014, 39, 453-460.	3.5	282
4	Nanoparticles of SnO Produced by Sonochemistry as Anode Materials for Rechargeable Lithium Batteries. Chemistry of Materials, 2002, 14, 4155-4163.	6.7	265
5	Critical Role of Crystal Water for a Layered Cathode Material in Sodium Ion Batteries. Chemistry of Materials, 2015, 27, 3721-3725.	6.7	174
6	Exceptionally Active and Stable Spinel Nickel Manganese Oxide Electrocatalysts for Urea Oxidation Reaction. ACS Applied Materials & amp; Interfaces, 2016, 8, 12176-12185.	8.0	130
7	Leaching Chemistry and the Performance of the Mo6S8Cathodes in Rechargeable Mg Batteries. Chemistry of Materials, 2004, 16, 2832-2838.	6.7	100
8	Cu2Mo6S8Chevrel Phase, A Promising Cathode Material for New Rechargeable Mg Batteries:Â A Mechanically Induced Chemical Reaction. Chemistry of Materials, 2002, 14, 2767-2773.	6.7	76
9	Effect of Fe in suppressing the discharge voltage decay of high capacity Li-rich cathodes for Li-ion batteries. Journal of Solid State Electrochemistry, 2015, 19, 2781-2792.	2.5	71
10	Single-Wall Carbon Nanotube Doping in Lead-Acid Batteries: A New Horizon. ACS Applied Materials & Interfaces, 2017, 9, 3634-3643.	8.0	68
11	Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 6142-6152.	2.8	65
12	Electrochemical Performance of a Layered-Spinel Integrated Li[Ni _{1/3} Mn _{2/3}]O ₂ as a High Capacity Cathode Material for Li-Ion Batteries. Chemistry of Materials, 2015, 27, 2600-2611.	6.7	46
13	Chevrel Phases, M _{<i>x</i>} Mo ₆ T ₈ (M = Metals, T = S, Se, Te) as a Structural Chameleon: Changes in the Rhombohedral Framework and Triclinic Distortion. Chemistry of Materials, 2010, 22, 3678-3692.	6.7	43
14	Electrochemical performance of Na _{0.6} [Li _{0.2} Ni _{0.2} Mn _{0.6}]O ₂ cathodes with high-working average voltage for Na-ion batteries. Journal of Materials Chemistry A, 2017, 5, 5858-5864.	10.3	35
15	Improved capacity and stability of integrated Li and Mn rich layered-spinel Li _{1.17} Ni _{0.25} Mn _{1.08} O ₃ cathodes for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14598-14608.	10.3	29
16	Reaching Highly Stable Specific Capacity with Integrated 0.6Li ₂ MnO ₃ : 0.4LiNi _{0.6} Co _{0.2} Mn _{0.2Cathode Materials. ChemElectroChem, 2018, 5, 1137-1146.}	>O< 3.4 b>2	
17	Lattice strains in the layered Mn, Ni and Co oxides as cathode materials in Li and Na batteries. Solid State Ionics, 2014, 264, 54-68.	2.7	18
18	Highâ€Capacity Layered‧pinel Cathodes for Liâ€lon Batteries. ChemSusChem, 2016, 9, 2404-2413.	6.8	17

Elena Levi

#	Article	IF	CITATIONS
19	Bond-valence model for metal cluster compounds. II. Matrix effect. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2013, 69, 426-438.	1.1	16
20	Multiphase LiNi _{0.33} Mn _{0.54} Co _{0.13} O ₂ Cathode Material with High Capacity Retention for Liâ€Ion Batteries. ChemElectroChem, 2015, 2, 1957-1965.	3.4	16
21	Lattice Strains in the Ligand Framework in the Octahedral Metal Cluster Compounds as the Origin of Their Instability. Chemistry of Materials, 2011, 23, 1901-1914.	6.7	15
22	The crystal structure of the inorganic surface films formed on Mg and Li intercalation compounds and the electrode performance. Journal of Solid State Electrochemistry, 2006, 10, 176-184.	2.5	12
23	Crystal chemistry and valence determinations for Mn, Ni and Co oxides as cathode materials in Li batteries. Solid State Ionics, 2014, 257, 1-8.	2.7	12
24	Bond-valence model for metal cluster compounds. I. Common lattice strains. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2013, 69, 419-425.	1.1	11
25	ls it True That the Normal Valence‣ength Correlation Is Irrelevant for Metal–Metal Bonds?. Chemistry - A European Journal, 2016, 22, 5269-5276.	3.3	11
26	Bond Order Conservation Principle and Peculiarities of the Metal–Metal Bonding. Inorganic Chemistry, 2018, 57, 15550-15557.	4.0	11
27	Do the basic crystal chemistry principles agree with a plethora of recent quantum chemistry data?. IUCrJ, 2018, 5, 542-547.	2.2	10
28	A revisit of the bond valence model makes it universal. Physical Chemistry Chemical Physics, 2020, 22, 13839-13849.	2.8	10
29	Electronic Effect Related to the Nonuniform Distribution of Ionic Charges in Metal-Cluster Chalcogenide Halides. European Journal of Inorganic Chemistry, 2014, 2014, 3736-3746.	2.0	8
30	Metal–Metal Bond in the Light of Pauling's Rules. Molecules, 2021, 26, 304.	3.8	6
31	Assessing the Strength of Metal–Metal Interactions. Inorganic Chemistry, 2019, 58, 7466-7471.	4.0	5
32	Steric and Electrostatic Effects in Compounds with Centered Clusters Quantified by Bond Order Analysis. Crystal Growth and Design, 2020, 20, 2115-2122.	3.0	4
33	Al-Doped Co-Free Layered-Spinel Mn/Ni Oxides as High-Capacity Cathode Materials for Advanced Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4279-4287.	5.1	3
34	Redox Potential and Crystal Chemistry of Hexanuclear Cluster Compounds. Molecules, 2021, 26, 3069.	3.8	1