
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5125979/publications.pdf Version: 2024-02-01

DAVID HI

#	Article	IF	CITATIONS
1	A dynamic mode decomposition based deep learning technique for prognostics. Journal of Intelligent Manufacturing, 2023, 34, 2207-2224.	4.4	4
2	Semi-supervised gear fault diagnosis using raw vibration signal based on deep learning. Chinese Journal of Aeronautics, 2020, 33, 418-426.	2.8	65
3	A new hybrid deep signal processing approach for bearing fault diagnosis using vibration signals. Neurocomputing, 2020, 396, 542-555.	3.5	64
4	Residual stress relaxation and duty cycle on high cycle fatigue life of micro-arc oxidation coated AA7075-T6 alloy. International Journal of Fatigue, 2020, 130, 105283.	2.8	18
5	A domain adaptation model for early gear pitting fault diagnosis based on deep transfer learning network. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2020, 234, 168-182.	0.6	19
6	Stationary random vibration of a viscoelastic Timoshenko cantilever beam under diverse random processes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234, 849-861.	1.1	2
7	Expected Maintenance Actions for Imperfect Production Processes Using a Markovian Approach. , 2020, , .		0
8	Gear pitting fault diagnosis with mixed operating conditions based on adaptive 1D separable convolution with residual connection. Mechanical Systems and Signal Processing, 2020, 142, 106740.	4.4	60
9	A Bayesian Optimization AdaBN-DCNN Method With Self-Optimized Structure and Hyperparameters for Domain Adaptation Remaining Useful Life Prediction. IEEE Access, 2020, 8, 41482-41501.	2.6	31
10	Unsupervised rotating machinery fault diagnosis method based on integrated SAE–DBN and a binary processor. Journal of Intelligent Manufacturing, 2020, 31, 1899-1916.	4.4	45
11	Mechanism of residual stress and surface roughness of substrate on fatigue behavior of micro-arc oxidation coated AA7075-T6 alloy. Surface and Coatings Technology, 2019, 380, 125014.	2.2	18
12	A Hybrid Deep Learning Based Approach for Remaining Useful Life Estimation. , 2019, , .		4
13	Influence of duty cycle on fatigue life of AA2024 with thin coating fabricated by micro-arc oxidation. Surface and Coatings Technology, 2019, 360, 347-357.	2.2	22
14	A Directed Acyclic Graph Network Combined With CNN and LSTM for Remaining Useful Life Prediction. IEEE Access, 2019, 7, 75464-75475.	2.6	157
15	Fatigue life of micro-arc oxidation coated AA2024-T3 and AA7075-T6 alloys. International Journal of Fatigue, 2019, 124, 493-502.	2.8	18
16	Gear Pitting Fault Diagnosis Using Integrated CNN and GRU Network with Both Vibration and Acoustic Emission Signals. Applied Sciences (Switzerland), 2019, 9, 768.	1.3	68
17	A Novel Method for Early Gear Pitting Fault Diagnosis Using Stacked SAE and GBRBM. Sensors, 2019, 19, 758.	2.1	26
18	Early Gear Pitting Fault Diagnosis Based on Bi-directional LSTM. , 2019, , .		7

Early Gear Pitting Fault Diagnosis Based on Bi-directional LSTM. , 2019, , . 18

#	Article	IF	CITATIONS
19	Domain Adaptation Remaining Useful Life Prediction Method Based on AdaBN-DCNN. , 2019, , .		14
20	Gear pitting fault diagnosis using disentangled features from unsupervised deep learning. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2019, 233, 719-730.	0.6	11
21	Wind turbine planetary gearbox feature extraction and fault diagnosis using a deep-learning-based approach. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2019, 233, 303-316.	0.6	15
22	Gear pitting fault diagnosis using raw acoustic emission signal based on deep learning. Eksploatacja I Niezawodnosc, 2019, 21, 403-410.	1.1	15
23	A Reliability-Based Robust Design Method for the Sealing of Slipper-Swash Plate Friction Pair in Hydraulic Piston Pump. IEEE Transactions on Reliability, 2018, 67, 459-469.	3.5	19
24	Using Deep Learning-Based Approach to Predict Remaining Useful Life of Rotating Components. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 11-20.	5.9	305
25	A new method to classify railway vehicle axle fatigue crack AE signal. Applied Acoustics, 2018, 131, 174-185.	1.7	29
26	Unsupervised Gear Fault Diagnosis Using Raw Vibration Signal Based on Deep Learning. , 2018, , .		2
27	Using Long Short Term Memory Based Approaches for Carbon Steel Fatigue Remaining Useful Life Prediction. , 2018, , .		4
28	PSO Optimized ANN Diagnosis of Early Gear Pitting. , 2018, , .		0
29	Simultaneous bearing fault diagnosis and severity detection using a LAMSTAR networkâ€based approach. IET Science, Measurement and Technology, 2018, 12, 893-901.	0.9	5
30	The effect of surface roughness of the substrate on fatigue life of coated aluminum alloy by micro-arc oxidation. Journal of Alloys and Compounds, 2018, 765, 1018-1025.	2.8	33
31	Gear pitting fault diagnosis using disentangled features from unsupervised deep learning. , 2018, , .		0
32	A Method to Decompose the Streamed Acoustic Emission Signals for Detecting Embedded Fatigue Crack Signals. Applied Sciences (Switzerland), 2018, 8, 7.	1.3	20
33	Experimental study of dynamic strain for gear tooth using fiber Bragg gratings and piezoelectric strain sensors. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 3992-4003.	1.1	13
34	Deep Learning Based Approach for Bearing Fault Diagnosis. IEEE Transactions on Industry Applications, 2017, 53, 3057-3065.	3.3	318
35	Rolling bearing fault severity identification using deep sparse auto-encoder network with noise added sample expansion. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2017, 231, 666-679.	0.6	21

36 DSP based module for processing vibration signals of rotation machinery. , 2017, , .

4

#	Article	IF	CITATIONS
37	Statistical Analysis and Fatigue Life Estimations for Quenched and Tempered Steel at Different Tempering Temperatures. Metals, 2017, 7, 312.	1.0	7
38	Fatigue Life Estimation of Medium-Carbon Steel with Different Surface Roughness. Applied Sciences (Switzerland), 2017, 7, 338.	1.3	31
39	Remaining Useful Life Prediction of Hybrid Ceramic Bearings Using an Integrated Deep Learning and Particle Filter Approach. Applied Sciences (Switzerland), 2017, 7, 649.	1.3	53
40	Detection of Pitting in Gears Using a Deep Sparse Autoencoder. Applied Sciences (Switzerland), 2017, 7, 515.	1.3	45
41	Vibrationâ€based wind turbine planetary gearbox fault diagnosis using spectral averaging. Wind Energy, 2016, 19, 1733-1747.	1.9	26
42	A New Signal Processing and Feature Extraction Approach for Bearing Fault Diagnosis using AE Sensors. Journal of Failure Analysis and Prevention, 2016, 16, 821-827.	0.5	9
43	Low speed bearing fault diagnosis using acoustic emission sensors. Applied Acoustics, 2016, 105, 35-44.	1.7	89
44	Planetary gearbox fault diagnostic method using acoustic emission sensors. IET Science, Measurement and Technology, 2015, 9, 936-944.	0.9	27
45	Online particle-contaminated lubrication oil condition monitoring and remaining useful life prediction for wind turbines. Wind Energy, 2015, 18, 1131-1149.	1.9	73
46	Development of an Efficient Prognostic Estimator. Journal of Failure Analysis and Prevention, 2015, 15, 129-138.	0.5	9
47	On the Use of a Single Piezoelectric Strain Sensor for Wind Turbine Planetary Gearbox Fault Diagnosis. IEEE Transactions on Industrial Electronics, 2015, 62, 6585-6593.	5.2	58
48	Bearing fault diagnosis based on a new acoustic emission sensor technique. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2015, 229, 105-118.	0.6	21
49	On the Use of Spectral Averaging of Acoustic Emission Signals for Bearing Fault Diagnostics. Journal of Vibration and Acoustics, Transactions of the ASME, 2014, 136, .	1.0	20
50	Gearbox Tooth Cut Fault Diagnostics Using Acoustic Emission and Vibration Sensors — A Comparative Study. Sensors, 2014, 14, 1372-1393.	2.1	94
51	A New Spectral Average-Based Bearing Fault Diagnostic Approach. Journal of Failure Analysis and Prevention, 2014, 14, 354.	0.5	2
52	Nonsmooth identification of mechanical systems with backlash-like hysteresis. Journal of Control Theory and Applications, 2013, 11, 477-482.	0.8	1
53	A nonsmooth IMC method for mechanical systems with backlash. Journal of Control Theory and Applications, 2013, 11, 600-607.	0.8	5
54	Development of a new acoustic emission based fault diagnosis tool for gearbox. , 2013, , .		9

#	Article	IF	CITATIONS
55	Full ceramic bearing fault diagnosis using LAMSTAR neural network. , 2013, , .		9
56	Online condition monitoring and remaining useful life prediction of particle contaminated lubrication oil. , 2013, , .		22
57	A Particle Filtering Based Approach for Gear Prognostics. , 2013, , 257-266.		5
58	Investigation on full ceramic bearing fault diagnostics using vibration and AE sensors. , 2012, , .		1
59	Plastic Bearing Fault Diagnosis Based on a Two-Step Data Mining Approach. IEEE Transactions on Industrial Electronics, 2012, , 1-1.	5.2	76
60	Gear Fault Location Detection for Split Torque Gearbox Using AE Sensors. IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and Reviews, 2012, 42, 1308-1317.	3.3	27
61	Fault features extraction for bearing prognostics. Journal of Intelligent Manufacturing, 2012, 23, 313-321.	4.4	73
62	Quantification of condition indicator performance on a split torque gearbox. Journal of Intelligent Manufacturing, 2012, 23, 213-220.	4.4	19
63	Stochastic modeling of damage physics for mechanical component prognostics using condition indicators. Journal of Intelligent Manufacturing, 2012, 23, 221-226.	4.4	11
64	Application of the condition based maintenance checking system for aircrafts. Journal of Intelligent Manufacturing, 2012, 23, 277-288.	4.4	13
65	Rotational Machine Health Monitoring and Fault Detection Using EMD-Based Acoustic Emission Feature Quantification. IEEE Transactions on Instrumentation and Measurement, 2012, 61, 990-1001.	2.4	164
66	Data Mining Based Full Ceramic Bearing Fault Diagnostic System Using AE Sensors. IEEE Transactions on Neural Networks, 2011, 22, 2022-2031.	4.8	75
67	A new vibration signal processing method for gearbox fault detection. , 2011, , .		3
68	Development and evaluation of AE based condition indicators for full ceramic bearing fault diagnosis. , 2011, , .		1
69	Development and Validation of Bearing Diagnostic and Prognostic Tools using HUMS Condition Indicators. Aerospace Conference Proceedings IEEE, 2008, , .	0.0	18
70	Use of Paris Law for Prediction of Component Remaining Life. Aerospace Conference Proceedings IEEE, 2008, , .	0.0	11
71	Development of Regime Recognition Tools for Usage Monitoring. , 2007, , .		6
72	Equipment health diagnosis and prognosis using hidden semi-Markov models. International Journal of Advanced Manufacturing Technology, 2006, 30, 738-749.	1.5	69

#	Article	IF	CITATIONS
73	Joint statistical design of double sampling and s charts. European Journal of Operational Research, 2006, 168, 122-142.	3.5	54
74	Multivariate multiple sampling charts. IIE Transactions, 2005, 37, 509-521.	2.1	32
75	Solving then-job 3-stage flexible flowshop scheduling problem using an agent-based approach. International Journal of Production Research, 2004, 42, 777-799.	4.9	36
76	System Failure Analysis Through Counters of Petri Net Models. Quality and Reliability Engineering International, 2004, 20, 317-335.	1.4	47
77	Construction of double samplings-control charts for agile manufacturing. Quality and Reliability Engineering International, 2002, 18, 343-355.	1.4	51
78	Scheduling manufacturing systems in an agile environment. Robotics and Computer-Integrated Manufacturing, 2001, 17, 87-97.	6.1	26