Gerald Gimpl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5125750/publications.pdf

Version: 2024-02-01

201575 276775 5,248 41 27 41 h-index citations g-index papers 42 42 42 6179 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The Oxytocin Receptor System: Structure, Function, and Regulation. Physiological Reviews, 2001, 81, 629-683.	13.1	2,531
2	Alteration of the Myometrial Plasma Membrane Cholesterol Content with .betaCyclodextrin Modulates the Binding Affinity of the Oxytocin Receptor. Biochemistry, 1995, 34, 13784-13793.	1.2	517
3	Cholesterol as Modulator of Receptor Functionâ€. Biochemistry, 1997, 36, 10959-10974.	1.2	431
4	Interaction of G protein coupled receptors and cholesterol. Chemistry and Physics of Lipids, 2016, 199, 61-73.	1.5	167
5	Expression of the Human Oxytocin Receptor in Baculovirus-Infected Insect Cells: High-Affinity Binding Is Induced by a Cholesterol-Cyclodextrin Complex. Biochemistry, 1995, 34, 13794-13801.	1.2	152
6	Cholesterol as stabilizer of the oxytocin receptor. Biochimica Et Biophysica Acta - Biomembranes, 2002, 1564, 384-392.	1.4	105
7	Cholesterol Reporter Molecules. Bioscience Reports, 2007, 27, 335-358.	1.1	99
8	Direct identification of an extracellular agonist binding site in the renal V2 vasopressin receptor. Biochemistry, 1993, 32, 13537-13544.	1.2	93
9	Human oxytocin receptors in cholesterol-rich vs. cholesterol-poor microdomains of the plasma membrane. FEBS Journal, 2000, 267, 2483-2497.	0.2	85
10	Antidepressants and Antipsychotic Drugs Colocalize with 5-HT3 Receptors in Raft-Like Domains. Journal of Neuroscience, 2005, 25, 10198-10206.	1.7	82
11	Cholesterol–Protein Interaction: Methods and Cholesterol Reporter Molecules. Sub-Cellular Biochemistry, 2010, 51, 1-45.	1.0	72
12	Chapter 4 Cholesterol and steroid hormones: modulators of oxytocin receptor function. Progress in Brain Research, 2002, 139, 43-55.	0.9	71
13	Oxytocin receptors: ligand binding, signalling and cholesterol dependence. Progress in Brain Research, 2008, 170, 193-204.	0.9	70
14	Probes for studying cholesterol binding and cell biology. Steroids, 2011, 76, 216-231.	0.8	67
15	Non-genomic effects of progesterone on the signaling function of G protein-coupled receptors. FEBS Letters, 1999, 464, 25-29.	1.3	52
16	Transport of plasma membraneâ€derived cholesterol and the function of Niemannâ€Pick C1 protein. FASEB Journal, 2003, 17, 782-784.	0.2	51
17	Unsaturated Fatty Acids Drive Disintegrin and Metalloproteinase (ADAM)-dependent Cell Adhesion, Proliferation, and Migration by Modulating Membrane Fluidity. Journal of Biological Chemistry, 2011, 286, 26931-26942.	1.6	49
18	Adaptation of neuronal cells to chronic oxidative stress is associated with altered cholesterol and sphingolipid homeostasis and lysosomal function. Journal of Neurochemistry, 2009, 111, 669-682.	2.1	46

#	Article	IF	Citations
19	Oxidative stress resistance in hippocampal cells is associated with altered membrane fluidity and enhanced nonamyloidogenic cleavage of endogenous amyloid precursor protein. Free Radical Biology and Medicine, 2010, 48, 1236-1241.	1.3	45
20	Cholesterol interaction with the related steroidogenic acute regulatory lipidâ€transfer (START) domains of StAR (STARD1) and MLN64 (STARD3). FEBS Journal, 2008, 275, 1790-1802.	2.2	44
21	Bradykinin receptors in cultured astrocytes from neonatal rat brain are linked to physiological responses. Neuroscience Letters, 1992, 144, 139-142.	1.0	43
22	Oxytocin receptors and cholesterol: interaction and regulation. Experimental Physiology, 2000, 85, 41s-49s.	0.9	43
23	Melittin Modulates Keratinocyte Function through P2 Receptor-dependent ADAM Activation. Journal of Biological Chemistry, 2012, 287, 23678-23689.	1.6	40
24	A closer look at the cholesterol sensor. Trends in Biochemical Sciences, 2002, 27, 596-599.	3.7	39
25	Cholesterol-induced conformational changes in the oxytocin receptor. Biochemical Journal, 2011, 437, 541-553.	1.7	37
26	Binding domains of the oxytocin receptor for the selective oxytocin receptor antagonist barusiban in comparison to the agonists oxytocin and carbetocin. European Journal of Pharmacology, 2005, 510, 9-16.	1.7	30
27	Orientation and Dynamics of a Novel Fluorescent Cholesterol Analogue in Membranes of Varying Phase. Journal of Physical Chemistry B, 2009, 113, 4475-4481.	1.2	30
28	Eimeria bovis infection modulates endothelial host cell cholesterol metabolism for successful replication. Veterinary Research, 2015, 46, 100.	1.1	22
29	Photoaffinity Labeling of the Human Brain Cholecystokinin Receptor Overexpressed in Insect Cells. Solubilization, Deglycosylation and Purification. FEBS Journal, 1996, 237, 768-777.	0.2	16
30	Specification of the cholesterol interaction with the oxytocin receptor using a chimeric receptor approach. European Journal of Pharmacology, 2012, 676, 12-19.	1.7	15
31	Sodium functions as a negative allosteric modulator of the oxytocin receptor. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1301-1308.	1.4	15
32	Photoaffinity Labeling Analysis of the Interaction of Pituitary Adenylate-Cyclase-Activating Polypeptide (PACAP) with the PACAP Type I Receptor. FEBS Journal, 1997, 244, 400-406.	0.2	14
33	Identification of a receptor protein for neuropeptide Y in rabbit kidney G-protein association and inhibition of adenylate cyclase. FEBS Letters, 1991, 279, 219-222.	1.3	11
34	Molecular structure analysis of the pituitary adenylate cyclase activating polypeptide type I receptor from pig brain. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1222, 432-440.	1.9	11
35	Oxytocin receptor ligands: a survey of the patent literature. Expert Opinion on Therapeutic Patents, 2008, 18, 1239-1251.	2.4	11
36	Importance of Neuropeptide Y in the Regulation of Kidney Function. Annals of the New York Academy of Sciences, 1990, 611, 156-165.	1.8	10

#	Article	IF	CITATIONS
37	A mutation in the second intracellular loop of the pituitary adenylate cyclase activating polypeptide type I receptor confers constitutive receptor activation. FEBS Letters, 2000, 469, 142-146.	1.3	9
38	Synthesis and characterization of a novel rhodamine labeled cholesterol reporter. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 1099-1113.	1.4	8
39	Depletion of calcium stores contributes to progesterone-induced attenuation of calcium signaling of G protein-coupled receptors. Cellular and Molecular Life Sciences, 2010, 67, 2815-2824.	2.4	7
40	A constitutively active pituitary adenylate cyclase activating polypeptide (PACAP) type I receptor shows enhanced photoaffinity labeling of its highly glycosylated form. BBA - Proteins and Proteomics, 2001, 1548, 139-151.	2.1	4
41	A novel cholesterol-based detergent. FEBS Journal, 2005, 272, 800-812.	2.2	4