
## **Stephan Schueler**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5125603/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy,<br>and its implications for clinical practice: a position statement of the ESC working group on<br>myocardial and pericardial diseases. European Heart Journal, 2016, 37, 1850-1858. | 2.2 | 757       |
| 2  | Second annual report from the ISHLT Mechanically Assisted Circulatory Support Registry. Journal of<br>Heart and Lung Transplantation, 2018, 37, 685-691.                                                                                                                                  | 0.6 | 111       |
| 3  | Results of the post-market Registry to Evaluate the HeartWare Left Ventricular Assist System<br>(ReVOLVE). Journal of Heart and Lung Transplantation, 2014, 33, 486-491.                                                                                                                  | 0.6 | 104       |
| 4  | First Annual IMACS Report: A global International Society for Heart and Lung Transplantation Registry for Mechanical Circulatory Support. Journal of Heart and Lung Transplantation, 2016, 35, 407-412.                                                                                   | 0.6 | 98        |
| 5  | Left Ventricular Assist Device as a BridgeÂto Recovery for Patients With Advanced Heart Failure.<br>Journal of the American College of Cardiology, 2017, 69, 1924-1933.                                                                                                                   | 2.8 | 96        |
| 6  | First human use of a wireless coplanar energy transfer coupled with a continuous-flow left ventricular assist device. Journal of Heart and Lung Transplantation, 2019, 38, 339-343.                                                                                                       | 0.6 | 87        |
| 7  | Epidemiology of infection in mechanical circulatory support: A global analysis from the ISHLT<br>Mechanically Assisted Circulatory Support Registry. Journal of Heart and Lung Transplantation, 2019,<br>38, 364-373.                                                                     | 0.6 | 72        |
| 8  | American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. Journal of Heart and Lung Transplantation, 2020, 39, 187-219.                                                         | 0.6 | 71        |
| 9  | Effect of Left Ventricular Assist Device Implantation and Heart Transplantation on Habitual Physical<br>Activity and Quality of Life. American Journal of Cardiology, 2014, 114, 88-93.                                                                                                   | 1.6 | 65        |
| 10 | Evaluation of the HeartWare ventricular assist device Lavare cycle in a particle image velocimetry model and in clinical practice. European Journal of Cardio-thoracic Surgery, 2016, 50, 839-848.                                                                                        | 1.4 | 51        |
| 11 | Long-term support of patients receiving a left ventricular assist device for advanced heart failure: a<br>follow-up analysis of the Registry to Evaluate the HeartWare Left Ventricular Assist System. European<br>Journal of Cardio-thoracic Surgery, 2016, 50, 834-838.                 | 1.4 | 46        |
| 12 | Durable Ventricular Assist Device Support for Failing Systemic Morphologic Right Ventricle:<br>EarlyÂResults. Annals of Thoracic Surgery, 2014, 98, 2122-2129.                                                                                                                            | 1.3 | 43        |
| 13 | American Association for Thoracic Surgery/International Society for Heart and Lung Transplantation guidelines on selected topics in mechanical circulatory support. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 865-896.                                                   | 0.8 | 41        |
| 14 | Long-Term Survival of Patients With Advanced Heart Failure Receiving an Left Ventricular Assist<br>Device Intended as a Bridge to Transplantation. Circulation: Heart Failure, 2020, 13, e006252.                                                                                         | 3.9 | 30        |
| 15 | Trends in long-term mechanical circulatory support for advanced heart failure in the UK. European<br>Journal of Heart Failure, 2013, 15, 1185-1193.                                                                                                                                       | 7.1 | 29        |
| 16 | Development of de novo aortic valve incompetence in patients with the continuous-flow HeartWare ventricular assist device. Journal of Heart and Lung Transplantation, 2016, 35, 312-319.                                                                                                  | 0.6 | 25        |
| 17 | Impact of aortic valve closure on adverse events and outcomes with the HeartWare ventricular assist device. Journal of Heart and Lung Transplantation, 2017, 36, 42-49.                                                                                                                   | 0.6 | 25        |
| 18 | An Extended Role of Continuous Flow Device in Pediatric Mechanical Circulatory Support. Annals of Thoracic Surgery, 2016, 102, 620-627.                                                                                                                                                   | 1.3 | 24        |

STEPHAN SCHUELER

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Myocardial Recovery Strategy with Decommissioning for the HeartWare Left Ventricular Assist<br>Device. ASAIO Journal, 2017, 63, 299-304.                                                                   | 1.6 | 24        |
| 20 | Thrombocytopenia After Aortic Valve Replacement: Comparison Between Sutureless Perceval S Valve<br>and Perimount Magna Ease Bioprosthesis. Brazilian Journal of Cardiovascular Surgery, 2018, 33, 169-175. | 0.6 | 24        |
| 21 | Algorithms to guide ambulance clinicians in the management of emergencies in patients with implanted rotary left ventricular assist devices. Emergency Medicine Journal, 2017, 34, 842-850.                | 1.0 | 22        |
| 22 | Comparison of paracorporeal and continuous flow ventricular assist devices in children: preliminary resultsâ€. European Journal of Cardio-thoracic Surgery, 2017, 51, 709-714.                             | 1.4 | 21        |
| 23 | Four-year outcomes with third-generation centrifugal left ventricular assist devices in an era of restricted transplantation. European Journal of Cardio-thoracic Surgery, 2014, 46, e35-e40.              | 1.4 | 14        |
| 24 | LVAD decommissioning for myocardial recovery: Long-term ventricular remodeling and adverse events. Journal of Heart and Lung Transplantation, 2021, 40, 1560-1570.                                         | 0.6 | 13        |
| 25 | Pre-transplant ventricular assist device explant. Annals of Cardiothoracic Surgery, 2018, 7, 160-168.                                                                                                      | 1.7 | 11        |
| 26 | Patient survival and therapeutic outcome in the UK bridge to transplant left ventricular assist device population. Heart, 2019, 105, 291-296.                                                              | 2.9 | 11        |
| 27 | Aortic Valve Replacement with a Conventional Stented Bioprosthesis versus Sutureless Bioprosthesis:<br>a Study of 763 Patients. Brazilian Journal of Cardiovascular Surgery, 2018, 33, 122-128.            | 0.6 | 9         |
| 28 | Neutrophil to Lymphocyte Ratio Is Related to Thrombotic Complications and Survival in Continuous<br>Flow Left Ventricular Assist Devices. ASAIO Journal, 2020, 66, 199-204.                                | 1.6 | 8         |
| 29 | First-in-man use of the MVAD axial-flow pump: Long-term outcome. Journal of Heart and Lung<br>Transplantation, 2018, 37, 933-936.                                                                          | 0.6 | 6         |
| 30 | Impact of donor variables on heart transplantation outcomes in mechanically bridged versus<br>standard recipientsâ€. Interactive Cardiovascular and Thoracic Surgery, 2019, 28, 455-464.                   | 1.1 | 6         |
| 31 | Left Ventricular Filling Pressures Contribute to Exercise Limitation in Patients with Continuous Flow<br>Left Ventricular Assist Devices. ASAIO Journal, 2020, 66, 247-252.                                | 1.6 | 6         |
| 32 | Costâ€effectiveness of left ventricular assist devices as destination therapy in the United Kingdom. ESC<br>Heart Failure, 2021, 8, 3049-3057.                                                             | 3.1 | 6         |
| 33 | Considerations for patients awaiting heart transplantation-Insights from the UK experience. Journal of Thoracic Disease, 2015, 7, 527-31.                                                                  | 1.4 | 6         |
| 34 | Donor and recipient risk factor analysis of inferior postheart transplantation outcome in the era of<br>durable mechanical assist devices. Clinical Transplantation, 2018, 32, e13390.                     | 1.6 | 5         |
| 35 | Initial conservative management strategy of HeartWare left ventricular assist device thrombosis with<br>intravenous heparin or bivalirudin. International Journal of Artificial Organs, 2020, 43, 444-451. | 1.4 | 5         |
| 36 | Ventricular assist devices in transposition and failing systemic right ventricle: role of tricuspid valve<br>replacement. European Journal of Cardio-thoracic Surgery, 2022, 62, .                         | 1.4 | 5         |

STEPHAN SCHUELER

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Changing Face of Heart and Lung Transplantation: Presidential Address, 2003 Annual Meeting of the International Society for Heart and Lung Transplantation. Journal of Heart and Lung Transplantation, 2004, 23, 816-822. | 0.6 | 4         |
| 38 | The role of exercise hemodynamics in assessing patients with chronic heart failure and left ventricular assist devices. Expert Review of Medical Devices, 2019, 16, 891-898.                                                  | 2.8 | 4         |
| 39 | Early Clinical Results of Perceval Sutureless Aortic Valve in 139 Patients: Freeman Experience.<br>Brazilian Journal of Cardiovascular Surgery, 2018, 33, 8-14.                                                               | 0.6 | 4         |
| 40 | Markers of Right Ventricular Dysfunction Predict Maximal Exercise Capacity After Left Ventricular<br>Assist Device Implantation. ASAIO Journal, 2021, 67, 284-289.                                                            | 1.6 | 4         |
| 41 | Does infection predispose to thrombosis during longâ€ŧerm ventricular assist device support?.<br>Artificial Organs, 2022, , .                                                                                                 | 1.9 | 4         |
| 42 | Editorial Comment: Ventricular assist devices for advanced heart failure: evidence that cannot be ignored. European Journal of Cardio-thoracic Surgery, 2013, 43, 1242-1243.                                                  | 1.4 | 3         |
| 43 | Durable left ventricular assist device support as a bridge to heart transplant candidacyâ€. Interactive<br>Cardiovascular and Thoracic Surgery, 2019, 28, 594-601.                                                            | 1.1 | 3         |
| 44 | Outcomes of Durable Mechanical Circulatory Support in Myocarditis. ASAIO Journal, 2021, Publish<br>Ahead of Print, .                                                                                                          | 1.6 | 2         |
| 45 | Using existing technology better: Improving outcomes with the HeartWare left ventricular assist device. International Journal of Cardiology, 2021, 331, 35-39.                                                                | 1.7 | 2         |
| 46 | HeartWare Explant After Recovery 6 Years After Implant in a 3-Year-Old Child: Has the Game Changed?.<br>Annals of Thoracic Surgery, 2021, 112, e37-e39.                                                                       | 1.3 | 2         |
| 47 | A novel intrapericardial pulsatile device for individualized, biventricular circulatory support without direct blood contact. Journal of Thoracic and Cardiovascular Surgery, 2022, , .                                       | 0.8 | 2         |
| 48 | Gender differences in the assessment, decision making and outcomes for ventricular assist devices<br>and heart transplantation: An analysis from a UK transplant centre. Clinical Transplantation, 2022, ,<br>e14666.         | 1.6 | 2         |
| 49 | Implantation of Ventricular Assist Devices in Hypertrophic Cardiomyopathy. Is It a Safe Option?<br>Response. Revista Espanola De Cardiologia (English Ed ), 2017, 70, 1025-1026.                                              | 0.6 | 0         |
| 50 | Validity of Hemodynamic Monitoring Using Inert Gas Rebreathing Method in Patients With Chronic<br>Heart Failure and Those Implanted With a Left Ventricular Assist Device. Journal of Cardiac Failure,<br>2021, 27, 414-418.  | 1.7 | 0         |