Xin-hua Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5125501/publications.pdf

Version: 2024-02-01

430442 360668 1,271 45 18 citations h-index papers

g-index 48 48 48 2217 docs citations times ranked citing authors all docs

35

#	Article	IF	CITATIONS
1	Suppression of neuroinflammation by astrocytic dopamine D2 receptors via $\hat{l}\pm B$ -crystallin. Nature, 2013, 494, 90-94.	13.7	347
2	Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury. Acta Biomaterialia, 2016, 45, 247-261.	4.1	97
3	BDNF blended chitosan scaffolds for human umbilical cord MSC transplants in traumatic brain injury therapy. Biomaterials, 2012, 33, 3119-3126.	5.7	85
4	Lycium barbarum Polysaccharides Prevent Memory and Neurogenesis Impairments in Scopolamine-Treated Rats. PLoS ONE, 2014, 9, e88076.	1.1	74
5	Activation of Phosphatidylinositol-Linked D1-Like Receptor Modulates FGF-2 Expression in Astrocytes via IP3-Dependent Ca2+ Signaling. Journal of Neuroscience, 2009, 29, 7766-7775.	1.7	52
6	3D Porous Chitosan Scaffolds Suit Survival and Neural Differentiation of Dental Pulp Stem Cells. Cellular and Molecular Neurobiology, 2014, 34, 859-870.	1.7	47
7	Therapeutic effect of human umbilical cord mesenchymal stem cells on neonatal rat hypoxic–ischemic encephalopathy. Journal of Neuroscience Research, 2014, 92, 35-45.	1.3	47
8	IGF-1 Promotes Brn-4 Expression and Neuronal Differentiation of Neural Stem Cells via the PI3K/Akt Pathway. PLoS ONE, 2014, 9, e113801.	1.1	44
9	Identification of a Vav2-dependent mechanism for GDNF/Ret control of mesolimbic DAT trafficking. Nature Neuroscience, 2015, 18, 1084-1093.	7.1	37
10	In vitro differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs), derived from Wharton's jelly, into choline acetyltransferase (ChAT)â€positive cells. International Journal of Developmental Neuroscience, 2012, 30, 471-477.	0.7	33
11	The denervated hippocampus provides proper microenvironment for the survival and differentiation of neural progenitors. Neuroscience Letters, 2007, 414, 115-120.	1.0	28
12	Crucial roles of MZFâ€1 in the transcriptional regulation of apomorphineâ€induced modulation of FGFâ€2 expression in astrocytic cultures. Journal of Neurochemistry, 2009, 108, 952-961.	2.1	27
13	Stage-dependent STAT3 activation is involved in the differentiation of rat hippocampus neural stem cells. Neuroscience Letters, 2011, 493, 18-23.	1.0	27
14	Proliferation, Migration, and Neuronal Differentiation of the Endogenous Neural Progenitors in Hippocampus after Fimbria Fornix Transection. International Journal of Neuroscience, 2010, 120, 192-200.	0.8	23
15	Brnâ€4 is upregulated in the deafferented hippocampus and promotes neuronal differentiation of neural progenitors in vitro. Hippocampus, 2009, 19, 176-186.	0.9	22
16	DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis. Oncotarget, 2017, 8, 8679-8692.	0.8	22
17	Cortical Endogenic Neural Regeneration of Adult Rat after Traumatic Brain Injury. PLoS ONE, 2013, 8, e70306.	1.1	21
18	Effects of Brn-4 on the neuronal differentiation of neural stem cells derived from rat midbrain. Cell Biology International, 2010, 34, 877-882.	1.4	19

#	Article	IF	Citations
19	Identification of neonatal rat hippocampal radial glia cells in vitro. Neuroscience Letters, 2011, 490, 209-214.	1.0	17
20	MicroRNA expression profiles of neural stem cells following valproate inducement. Journal of Cellular Biochemistry, 2018, 119, 6204-6215.	1.2	17
21	Neural differentiation of human Wharton's jelly-derived mesenchymal stem cells improves the recovery of neurological function after transplantation in ischemic stroke rats. Neural Regeneration Research, 2017, 12, 1103.	1.6	17
22	miR-103-3p targets Ndel1 to regulate neural stem cell proliferation and differentiation. Neural Regeneration Research, 2022, 17, 401.	1.6	16
23	The role of Brn-4 in the regulation of neural stem cell differentiation into neurons. Neuroscience Research, 2010, 67, 8-17.	1.0	15
24	Elevated Hapln2 Expression Contributes to Protein Aggregation and Neurodegeneration in an Animal Model of Parkinson's Disease. Frontiers in Aging Neuroscience, 2016, 8, 197.	1.7	15
25	Characterization and identification of Sox2+ radial glia cells derived from rat embryonic cerebral cortex. Histochemistry and Cell Biology, 2011, 136, 515-526.	0.8	12
26	Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells. Neural Regeneration Research, 2016, 11, 597.	1.6	11
27	Effects of Ginkgolide on the development of NOS and AChE positive neurons in the embryonic basal forebrain. Cell Biology International, 2006, 30, 500-504.	1.4	10
28	Expression and function of Ndel1 during the differentiation of neural stem cells induced by hippocampal exosomesticle. Stem Cell Research and Therapy, 2021, 12, 51.	2.4	10
29	CircHECTD1 Regulates Cell Proliferation and Migration by the miR-320-5p/SLC2A1 Axis in Glioblastoma Multiform. Frontiers in Oncology, 2021, 11, 666391.	1.3	8
30	P4HA2 promotes cell proliferation and migration in glioblastoma. Oncology Letters, 2021, 22, 601.	0.8	8
31	circRNA Acbd6 promotes neural stem cell differentiation into cholinergic neurons via the miR-320-5p-Osbpl2 axis. Journal of Biological Chemistry, 2022, 298, 101828.	1.6	8
32	Overexpression of Lhx8 inhibits cell proliferation and induces cell cycle arrest in PC12 cell line. In Vitro Cellular and Developmental Biology - Animal, 2015, 51, 329-335.	0.7	7
33	Exploration of the Brn4â€regulated genes enhancing adult hippocampal neurogenesis by RNA sequencing. Journal of Neuroscience Research, 2017, 95, 2071-2079.	1.3	7
34	Upregulation of Lhx8 increase VAChT expression and ACh release in neuronal cell line SHSY5Y. Neuroscience Letters, 2014, 559, 184-188.	1.0	5
35	The role of hippocampal niche exosomes in rat hippocampal neurogenesis after fimbria–fornix transection. Journal of Biological Chemistry, 2021, 296, 100188.	1.6	5
36	Research progress of the transcription factor Brn4 (Review). Molecular Medicine Reports, 2020, 23, .	1.1	5

3

#	Article	IF	CITATIONS
37	Hemophagocytic syndrome secondary to adult-onset Still's disease but very similar to lymphoma. International Journal of Clinical and Experimental Pathology, 2012, 5, 377-81.	0.5	5
38	Extract of deafferented hippocampus promotes in vitro radial glial cell differentiation into neurons. Neuroscience Letters, 2011, 498, 93-98.	1.0	4
39	Brn4 promotes the differentiation of radial glial cells into neurons by inhibiting CtBP2. Life Sciences, 2020, 254, 116866.	2.0	4
40	Prolonged modulation of FGF-2 expression in astrocytic cultures induced by O,O′-diacetyl-apomorphine. Biochemical and Biophysical Research Communications, 2008, 369, 824-829.	1.0	3
41	Ectopic Neurogenesis in the Forebrain Cholinergic System-Related Areas of a Rat Dementia Model. Stem Cells and Development, 2011, 20, 1627-1638.	1.1	3
42	The dynamic expression of Mash1 in the hippocampal subgranular zone after fimbria-fornix transection. Neuroscience Letters, 2012, 520, 26-31.	1.0	3
43	Stromal derived factorâ€1α in hippocampus radial glial cells in vitro regulates the migration of neural progenitor cells. Cell Biology International, 2015, 39, 750-758.	1.4	3
44	Generation and identification of rat fetal cerebral radial glia-like cells in vitro. In Vitro Cellular and Developmental Biology - Animal, 2011, 47, 431-437.	0.7	1
45	Stem Cells and Spinal Cord Regeneration. Translational Medicine Research, 2015, , 471-498.	0.0	O