Jothi Kumar Yuvaraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5125357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	First Report of " <i>Candidatus</i> Liberibacter solanacearum―Associated with Psyllid-Affected Carrots in Sweden. Plant Disease, 2012, 96, 453-453.	1.4	68
2	Characterization of Odorant Receptors from a Non-ditrysian Moth, Eriocrania semipurpurella Sheds Light on the Origin of Sex Pheromone Receptors in Lepidoptera. Molecular Biology and Evolution, 2017, 34, 2733-2746.	8.9	59
3	Functional characterization of odorant receptors from Lampronia capitella suggests a non-ditrysian origin of the lepidopteran pheromone receptor clade. Insect Biochemistry and Molecular Biology, 2018, 100, 39-47.	2.7	36
4	Diversity of olfactory structures: A comparative study of antennal sensilla in Trichoptera and Lepidoptera. Micron, 2018, 111, 9-18.	2.2	33
5	Functional characterization of odorant receptors from the moth Eriocrania semipurpurella: A comparison of results in the Xenopus oocyte and HEK cell systems. Insect Biochemistry and Molecular Biology, 2020, 117, 103289.	2.7	30
6	Functional Evolution of a Bark Beetle Odorant Receptor Clade Detecting Monoterpenoids of Different Ecological Origins. Molecular Biology and Evolution, 2021, 38, 4934-4947.	8.9	30
7	Antennal Transcriptome Analysis of the Chemosensory Gene Families From Trichoptera and Basal Lepidoptera. Frontiers in Physiology, 2018, 9, 1365.	2.8	26
8	Specificity and sensitivity of plant odor-detecting olfactory sensory neurons in Ctenarytaina eucalypti (Sternorrhyncha: Psyllidae). Journal of Insect Physiology, 2013, 59, 542-551.	2.0	21
9	Sex pheromone receptors of the light brown apple moth, Epiphyas postvittana, support a second major pheromone receptor clade within the Lepidoptera. Insect Biochemistry and Molecular Biology, 2022, 141, 103708.	2.7	15
10	Odorant receptor orthologues in coniferâ€feeding beetles display conserved responses to ecologically relevant odours. Molecular Ecology, 2022, 31, 3693-3707.	3.9	11
11	Codon Optimization of Insect Odorant Receptor Genes May Increase Their Stable Expression for Functional Characterization in HEK293 Cells. Frontiers in Cellular Neuroscience, 2021, 15, 744401.	3.7	10
12	Feeding by <i>Scolytus</i> bark beetles to test for differently susceptible elm varieties. Journal of Applied Entomology, 2017, 141, 417-420.	1.8	9
13	Chemical composition of anal droplets of the eusocial gall-inducing thrips Kladothrips intermedius. Chemoecology, 2014, 24, 85-94.	1.1	7
14	Identification of sesquisabinene B in carrot (Daucus carota L.) leaves as a compound electrophysiologically active to the carrot psyllid (Trioza apicalis Förster). Chemoecology, 2019, 29, 103-110.	1.1	7
15	Electrophysiological responses of carrot psyllids (<i>Trioza apicalis</i>), in different phases of their life cycle, to volatile carrot and conifer compounds. Journal of Applied Entomology, 2020, 144, 236-240.	1.8	1