
Victoria L Finkenstadt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5125356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical properties and water absorption behavior of injection-molded wood fiber/carbon fiber high-density polyethylene hybrid composites. Advanced Composites and Hybrid Materials, 2019, 2, 690-700.	9.9	50
2	Historic Role of the United States Department of Agriculture in Food Production, Quality, and Security. ACS Symposium Series, 2019, , 17-25.	0.5	0
3	Bacterial exopolysaccharides for corrosion resistance on low carbon steel. Journal of Applied Polymer Science, 2017, 134, 45032.	1.3	5
4	Thermal and Mechanical Properties of Compression-Moulded Poly(Lactic Acid)/Gluten/Clays Bio(Nano)Composites. Polymers and Polymer Composites, 2016, 24, 375-386.	1.0	2
5	Extruded foams prepared from high amylose starch with sodium stearate to form amylose inclusion complexes*. Journal of Applied Polymer Science, 2016, 133, .	1.3	10
6	Corrosion Protection of Steel by Thin Coatings of Starch–Oil Dry Lubricants*. , 2016, , 407-417.		0
7	Preparation of starch–poly–glutamic acid graft copolymers by microwave irradiation and the characterization of their properties. Carbohydrate Polymers, 2016, 140, 233-237.	5.1	35
8	Starchâ€poly(acrylamideâ€coâ€2â€acrylamidoâ€2â€methylpropanesulfonic acid) graft copolymers prepared by reactive extrusion. Journal of Applied Polymer Science, 2015, 132, .	1.3	12
9	Evaluation of Paulownia elongata wood polyethylene composites. Journal of Thermoplastic Composite Materials, 2015, 28, 1301-1320.	2.6	10
10	Impact of Solvent Selection on Graft Co-polymerization of Acrylamide Onto Starch. Journal of Polymers and the Environment, 2015, 23, 294-301.	2.4	5
11	Structure-Function Properties of Amylose-Oleic Acid Inclusion Complexes Grafted with Poly(methyl) Tj ETQq1 1 0.	784314 rş	gBT /Overloc
12	Properties of extruded starch–poly(methyl acrylate) graft copolymers prepared from spherulites formed from amylose–oleic acid inclusion complexes. Journal of Applied Polymer Science, 2014, 131, .	1.3	1
13	A Review on the Complete Utilization of the Sugarbeet. Sugar Tech, 2014, 16, 339-346.	0.9	46
14	Evaluation of the Mechanical and Thermal Properties of Coffee Tree Wood Flour - Polypropylene Composites. BioResources, 2014, 9, .	0.5	2
15	Rheological properties of reactive extrusion modified waxy starch and waxy starch-polyacrylamide copolymer gels. Starch/Staerke, 2013, 65, 984-990.	1.1	5
16	Physical and mechanical properties of extruded poly(lactic acid)-based Paulownia elongata biocomposites. Industrial Crops and Products, 2013, 44, 88-96.	2.5	39
17	Properties of High Density Polyethylene – Paulownia Wood Flour Composites via Injection Molding. BioResources, 2013, 8, .	0.5	27
18	Mechanical, Thermal, and Moisture Properties of Plastics with Bean as Filler. Journal of Biobased Materials and Bioenergy, 2012, 6, 59-68.	0.1	4

VICTORIA L FINKENSTADT

#	Article	IF	CITATIONS
19	Mechanical and Thermal Properties of High Density Polyethylene – Dried Distillers Grains with Solubles Composites. BioResources, 2012, 8, .	0.5	7
20	Corrosion protection of low-carbon steel using exopolysaccharide coatings from Leuconostoc mesenteroides. Biotechnology Letters, 2011, 33, 1093-1100.	1.1	53
21	Poly(lactic acid) and Osage Orange wood fiber composites for agricultural mulch films. Industrial Crops and Products, 2010, 31, 316-320.	2.5	73
22	Thermal and mechanical properties of compressionâ€molded pMDlâ€reinforced PCL/gluten composites. Journal of Applied Polymer Science, 2010, 118, 2778-2790.	1.3	15
23	Thermal properties of extruded and injection-molded poly(lactic acid)-based cuphea and lesquerella bio-composites. Journal of Applied Polymer Science, 2009, 111, 114-124.	1.3	10
24	Thermal properties of extruded injection-molded poly(lactic acid) and milkweed composites: Degradation kinetics and enthalpic relaxation. Journal of Applied Polymer Science, 2009, 111, 175-184.	1.3	7
25	Thermal properties of extruded/injectionâ€molded poly(lactic acid) and biobased composites. Journal of Applied Polymer Science, 2008, 107, 898-908.	1.3	27
26	Mechanical properties of green composites with polycaprolactone and wheat gluten. Journal of Applied Polymer Science, 2008, 110, 2218-2226.	1.3	29
27	Thermal properties of PCL/gluten bioblends characterized by TGA, DSC, SEM, and infraredâ€PAS. Journal of Applied Polymer Science, 2008, 110, 3256-3266.	1.3	66
28	Preparation of poly(lactic acid) and pectin composite films intended for applications in antimicrobial packaging. Journal of Applied Polymer Science, 2007, 106, 801-810.	1.3	89
29	Poly(lactic acid) green composites using oilseed coproducts as fillers. Industrial Crops and Products, 2007, 26, 36-43.	2.5	59
30	Evaluation of Poly(lactic acid) and Sugar Beet Pulp Green Composites. Journal of Polymers and the Environment, 2007, 15, 1-6.	2.4	52
31	Complexation and blending of starch, poly(acrylic acid), and poly(N-vinyl pyrrolidone). Carbohydrate Polymers, 2006, 65, 397-403.	5.1	42
32	Initiator effects in reactive extrusion of starch-polyacrylamide graft copolymers. Journal of Applied Polymer Science, 2006, 99, 52-58.	1.3	22
33	Characterization of Functionalized Electroactive Biopolymers. ACS Symposium Series, 2006, , 256-261.	0.5	3
34	Reactive Extrusion of Starch-Polyacrylamide Graft Copolymers: Effects of Monomer/Starch Ratio and Moisture Content. Macromolecular Chemistry and Physics, 2005, 206, 1648-1652.	1.1	54
35	Natural polysaccharides as electroactive polymers. Applied Microbiology and Biotechnology, 2005, 67, 735-745.	1.7	165
36	Preparation and Characterization of Electroactive Biopolymers. Macromolecular Symposia, 2005, 227, 367-372.	0.4	19

#	Article	IF	CITATIONS
37	A direct-current resistance technique for determining moisture content in native starches and starch-based plasticized materials. Carbohydrate Polymers, 2004, 55, 149-154.	5.1	18
38	Preparation of strach-graft-polyacrylamide copolymers by reactive extrusion. Polymer Engineering and Science, 2003, 43, 1666-1674.	1.5	42
39	CPRL: a program to plot the cylindrically projected reciprocal lattice for fiber diffraction patterns. Journal of Applied Crystallography, 1999, 32, 551-553.	1.9	Ο
40	Crystal Structure of Valonia Cellulose Iβ. Macromolecules, 1998, 31, 7776-7783.	2.2	100