Rakesh Kumar Gupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5124847/publications.pdf

Version: 2024-02-01

44 papers 1,733 citations

257101 24 h-index 276539 41 g-index

46 all docs

46 docs citations

46 times ranked

2348 citing authors

#	Article	IF	CITATIONS
1	Half-sandwich arene ruthenium complexes: synthetic strategies and relevance in catalysis. Chemical Society Reviews, 2014, 43, 707-733.	18.7	170
2	DNA Binding and Anti-Cancer Activity of Redox-Active Heteroleptic Piano-Stool Ru(II), Rh(III), and Ir(III) Complexes Containing 4-(2-Methoxypyridyl)phenyldipyrromethene. Inorganic Chemistry, 2013, 52, 3687-3698.	1.9	145
3	DNA/Protein Binding, Molecular Docking, and in Vitro Anticancer Activity of Some Thioether-Dipyrrinato Complexes. Inorganic Chemistry, 2013, 52, 13984-13996.	1.9	142
4	Synthesis, Structure, DNA/Protein Binding, and Anticancer Activity of Some Half-Sandwich Cyclometalated Rh(III) and Ir(III) Complexes. Organometallics, 2015, 34, 4491-4506.	1,1	109
5	Polymorphism in Atomically Precise Cu ₂₃ Nanocluster Incorporating Tetrahedral [Cu ₄] ⁰ Kernel. Journal of the American Chemical Society, 2020, 142, 5834-5841.	6.6	103
6	Synthesis and Characterization of Electroactive Ferrocene Derivatives: Ferrocenylimidazoquinazoline as a Multichannel Chemosensor Selectively for Hg ²⁺ and Pb ²⁺ lons in an Aqueous Environment. Inorganic Chemistry, 2012, 51, 298-311.	1.9	85
7	Interaction of ferrocene appended Ru(II), Rh(III) and Ir(III) dipyrrinato complexes with DNA/protein, molecular docking and antitumor activity. European Journal of Medicinal Chemistry, 2014, 84, 17-29.	2.6	82
8	Cationic Ru(II), Rh(III) and Ir(III) complexes containing cyclic -perimeter and 2-aminophenyl benzimidazole ligands: Synthesis, molecular structure, DNA and protein binding, cytotoxicity and anticancer activity. Journal of Organometallic Chemistry, 2016, 801, 68-79.	0.8	60
9	Recent Progress in Inorganic Anions Templated Silver Nanoclusters: Synthesis, Structures and Properties. Chemical Record, 2020, 20, 389-402.	2.9	54
10	Heteroleptic Dipyrrinato Complexes Containing 5-Ferrocenyldipyrromethene and Dithiocarbamates as Coligands: Selective Chromogenic and Redox Probes. Inorganic Chemistry, 2012, 51, 8916-8930.	1.9	44
11	Morphological tuning via structural modulations in AIE luminogens with the minimum number of possible variables and their use in live cell imaging. Chemical Communications, 2015, 51, 9125-9128.	2.2	44
12	Structural Diversity of Copper(I) Cluster-Based Coordination Polymers with Pyrazine-2-thiol Ligand. Inorganic Chemistry, 2020, 59, 2680-2688.	1.9	39
13	Potential apoptosis inducing agents based on a new benzimidazole schiff base ligand and its dicopper(<scp>ii</scp>) complex. RSC Advances, 2014, 4, 41228-41236.	1.7	38
14	Temperature-induced Sn(II) supramolecular isomeric frameworks as promising heterogeneous catalysts for cyanosilylation of aldehydes. Science China Chemistry, 2020, 63, 182-186.	4.2	38
15	Luminescent N,O-chelated chroman-BF ₂ complexes: structural variants of BODIPY. Dalton Transactions, 2013, 42, 1696-1707.	1.6	37
16	Recent developments in metal dipyrrin complexes: Design, synthesis, and applications. Coordination Chemistry Reviews, 2020, 414, 213269.	9.5	36
17	An Octanuclear Cobalt Cluster Protected by Macrocyclic Ligand: In Situ Ligand-Transformation-Assisted Assembly and Single-Molecule Magnet Behavior. Inorganic Chemistry, 2020, 59, 5683-5693.	1.9	36
18	Li+-induced selective gelation of discrete homochiral structural isomers derived from l-tartaric acid. Chemical Communications, 2014, 50, 8144.	2.2	35

#	Article	IF	CITATIONS
19	A Schiff Base and Its Copper(II) Complex as a Highly Selective Chemodosimeter for Mercury(II) Involving Preferential Hydrolysis of Aldimine over an Ester Group. Inorganic Chemistry, 2014, 53, 4944-4955.	1.9	35
20	Arylazopyrazole-functionalized photoswitchable octanuclear Zn(II)-silsesquioxane nanocage. Science China Chemistry, 2021, 64, 419-425.	4.2	35
21	Precise Implantation of an Archimedean Ag@Cu ₁₂ Cuboctahedron into a Platonic Cu ₄ Bis(diphenylphosphino)hexane ₆ Tetrahedron. ACS Nano, 2021, 15, 8733-8741.	7.3	33
22	Heteroleptic arene Ru(<scp>ii</scp>) dipyrrinato complexes: DNA, protein binding and anti-cancer activity against the ACHN cancer cell line. Dalton Transactions, 2016, 45, 7163-7177.	1.6	30
23	Hybridizing semiconductor nanocrystals with metal–organic frameworks for visible and near-infrared photon upconversion. Dalton Transactions, 2018, 47, 8590-8594.	1.6	28
24	A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel. Science China Chemistry, 2020, 63, 16-20.	4.2	27
25	Size-Controlled Synthesis of Ag Nanoparticles Functionalized by Heteroleptic Dipyrrinato Complexes Having <i>meso-</i> Pyridyl Substituents and Their Catalytic Applications. Inorganic Chemistry, 2015, 54, 2500-2511.	1.9	25
26	Swift photoswitching in a binuclear Zn(ii) metallacycle relative to a salen-type ligand. Dalton Transactions, 2014, 43, 6365.	1.6	21
27	Implication of Molecular Weight on Optical and Charge Transport Anisotropy in PQT-C12 Films Fabricated by Dynamic FTM. ACS Applied Materials & Eapricated by Dynamic FTM. ACS Applied By Dynamic FTM. ACS Applied Dynamic FTM. ACS Applied By Dynamic F	4.0	20
28	Triazole-appended BODIPY–piperazine conjugates and their efficacy toward mercury sensing. New Journal of Chemistry, 2015, 39, 2233-2239.	1.4	19
29	A dual-responsive "turn-on―bifunctional receptor: a chemosensor for Fe3+ and chemodosimeter for Hg2+. Dalton Transactions, 2015, 44, 7118-7122.	1.6	19
30	Synthesis of electroactive multinuclear dipyrrinato complexes and Fe(iii) assisted formation of \hat{l}_{\pm} -alkoxy substituted 5-ferrocenyldipyrromethenes. Dalton Transactions, 2012, 41, 8556.	1.6	15
31	Self-assembled copper(ii) metallacycles derived from asymmetric Schiff base ligands: efficient hosts for ADP/ATP in phosphate buffer. Dalton Transactions, 2015, 44, 17152-17165.	1.6	15
32	Hexadecanuclear Mn ^{II} ₂ Mn ^{III} ₁₄ Molecular Torus Built from <i>in Situ</i> Tandem Ligand Transformations. Inorganic Chemistry, 2019, 58, 14331-14337.	1.9	14
33	Photoassisted "Gate-Lock―Fluorescence "Turn-on―in a New Schiff Base and Coordination Ability of <i>E–Z</i> Isomers. Organic Letters, 2012, 14, 592-595.	2.4	12
34	A highly selective and femto-molar sensitive fluorescence â€~turn-on' chemodosimeter for Hg2+. Tetrahedron Letters, 2014, 55, 1437-1440.	0.7	11
35	Synthesis, characterization and photochemical properties of some ruthenium nitrosyl complexes. Polyhedron, 2013, 52, 837-843.	1.0	10
36	Dipyrrin complex assisted in situ synthesis of ultra-small gold nanoparticles decorated on a partially reduced graphene oxide nanocomposite for efficient catalytic reduction of Cr(<scp>vi</scp>) to Cr(<scp>iii</scp>). RSC Advances, 2016, 6, 40911-40915.	1.7	10

#	Article	IF	CITATIONS
37	Novel tetranuclear copper 2 + 4 cubanes resulting from unprecedented C–O bond formation cum dearomatization. Dalton Transactions, 2014, 43, 13169.	1.6	9
38	Structural and mechanistic insights into an Fe3+-triggered quinazoline based molecular rotor. Chemical Communications, 2014, 50, 8032.	2.2	9
39	Molecular orientation and anisotropic charge transport in the large area thin films of regioregular Poly(3-alkylthiophenes) fabricated by ribbon-shaped FTM. Organic Electronics, 2020, 81, 105687.	1.4	9
40	Fluorescent azophenol-quinazoline dyad as multichannel reversible pH indicator in aqueous media: an innovative concept on diazo based dyads. Tetrahedron Letters, 2013, 54, 6164-6167.	0.7	8
41	Synthesis and characterization of some heteroleptic copper(II) complexes based on meso-substituted dipyrrins. Journal of Chemical Sciences, 2011, 123, 819-826.	0.7	7
42	Synthesis and characterization of Ru(IV) and Rh(I) complexes containing phenylimidazole ligands. Journal of Organometallic Chemistry, 2010, 695, 1924-1931.	0.8	6
43	Structural diversity in heteroleptic dipyrrinato copper(II) complexes. Inorganica Chimica Acta, 2014, 409, 518-527.	1.2	6
44	Facile one-pot synthesis of a novel all-carbon stair containing dimerized pentalene core from alkyne. Chinese Chemical Letters, 2022, 33, 2047-2051.	4.8	3