Padma V Devarajan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5124834/publications.pdf Version: 2024-02-01

PADMA V DEVADAJAN

#	Article	IF	CITATIONS
1	Enhancing Curcumin Oral Bioavailability Through Nanoformulations. European Journal of Drug Metabolism and Pharmacokinetics, 2019, 44, 459-480.	1.6	92
2	Freeze Thaw: A Simple Approach for Prediction of Optimal Cryoprotectant for Freeze Drying. AAPS PharmSciTech, 2010, 11, 304-313.	3.3	91
3	Particle Shape: A New Design Parameter for Passive Targeting In Splenotropic Drug Delivery. Journal of Pharmaceutical Sciences, 2010, 99, 2576-2581.	3.3	80
4	Docosahexaenoic acid–mediated, targeted and sustained brain delivery of curcumin microemulsion. Drug Delivery, 2017, 24, 152-161.	5.7	71
5	Lipomer of doxorubicin hydrochloride for enhanced oral bioavailability. International Journal of Pharmaceutics, 2012, 423, 554-561.	5.2	65
6	A review on possible mechanistic insights of Nitazoxanide for repurposing in COVID-19. European Journal of Pharmacology, 2021, 891, 173748.	3.5	63
7	Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: Role of docosahexaenoic acid. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 363-379.	4.3	62
8	Nanoparticles of Polyethylene Sebacate: A New Biodegradable Polymer. AAPS PharmSciTech, 2009, 10, 935-42.	3.3	56
9	Insulin-loaded alginic acid nanoparticles for sublingual delivery. Drug Delivery, 2016, 23, 429-436.	5.7	49
10	Rifampicin Lipid-Polymer hybrid nanoparticles (LIPOMER) for enhanced Peyer's patch uptake. International Journal of Pharmaceutics, 2017, 532, 612-622.	5.2	33
11	In situ hybrid nano drug delivery system (IHN-DDS) of antiretroviral drug for simultaneous targeting to multiple viral reservoirs: An in vivo proof of concept. International Journal of Pharmaceutics, 2017, 521, 196-203.	5.2	32
12	Comparative In Silico–In Vivo Evaluation of ASGP-R Ligands for Hepatic Targeting of Curcumin Gantrez Nanoparticles. AAPS Journal, 2013, 15, 696-706.	4.4	29
13	Bioenhanced oral curcumin nanoparticles: Role of carbohydrates. Carbohydrate Polymers, 2016, 136, 1251-1258.	10.2	28
14	Polymeric curcumin nanoparticles by a facile in situ method for macrophage targeted delivery. Bioengineering and Translational Medicine, 2019, 4, 141-151.	7.1	26
15	Intramacrophage Delivery of Dual Drug Loaded Nanoparticles for Effective Clearance of Mycobacterium tuberculosis. Journal of Pharmaceutical Sciences, 2020, 109, 2262-2270.	3.3	25
16	Exploring Peyer's Patch Uptake as a Strategy for Targeted Lung Delivery of Polymeric Rifampicin Nanoparticles. Molecular Pharmaceutics, 2018, 15, 4434-4445.	4.6	24
17	Bone targeted delivery of salmon calcitonin hydroxyapatite nanoparticles for sublingual osteoporosis therapy (SLOT). Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102153.	3.3	22
18	Solid Dispersion of Curcumin as Polymeric Films for Bioenhancement and Improved Therapy of Rheumatoid Arthritis. Pharmaceutical Research, 2016, 33, 1972-1987.	3.5	20

Padma V Devarajan

#	Article	IF	CITATIONS
19	Enhanced antimalalarial activity of a prolonged release in situ gel of arteether–lumefantrine in a murine model. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 123, 95-107.	4.3	20
20	Enhancing Safety and Efficacy by Altering the Toxic Aggregated State of Amphotericin B in Lipidic Nanoformulations. Molecular Pharmaceutics, 2020, 17, 2186-2195.	4.6	20
21	Bioenhanced advanced third generation solid dispersion of tadalafil: Repurposing with improved therapy in pyelonephritis. Asian Journal of Pharmaceutical Sciences, 2017, 12, 569-579.	9.1	16
22	Inorganic nanovectors for nucleic acid delivery. Drug Delivery and Translational Research, 2013, 3, 446-470.	5.8	15
23	Receptor-mediated hepatocyte-targeted delivery of primaquine phosphate nanocarboplex using a carbohydrate ligand. Drug Delivery and Translational Research, 2014, 4, 353-364.	5.8	15
24	Asymmetric lipid–polymer particles (LIPOMER) by modified nanoprecipitation: role of non-solvent composition. International Journal of Pharmaceutics, 2015, 489, 246-251.	5.2	15
25	Enhanced insulin absorption from sublingual microemulsions: effect of permeation enhancers. Drug Delivery and Translational Research, 2014, 4, 429-438.	5.8	14
26	Controlled release floating multiparticulates of metoprolol succinate by hot melt extrusion. International Journal of Pharmaceutics, 2015, 491, 345-351.	5.2	13
27	Microwave-Assisted Development of Orally Disintegrating Tablets by Direct Compression. AAPS PharmSciTech, 2017, 18, 2055-2066.	3.3	12
28	Innovative Betulin Nanosuspension exhibits enhanced anticancer activity in a Triple Negative Breast Cancer Cell line and Zebrafish angiogenesis model. International Journal of Pharmaceutics, 2021, 600, 120511.	5.2	11
29	Shape mediated splenotropic delivery of buparvaquone loaded solid lipid nanoparticles. Drug Delivery and Translational Research, 2020, 10, 159-167.	5.8	10
30	Nanomedicine—prospects and challenges. Drug Delivery and Translational Research, 2013, 3, 381-381.	5.8	7
31	In situ polyethylene sebacate particulate carriers as an alternative to Freund's adjuvant for delivery of a contraceptive peptide vaccine — A feasibility study. International Journal of Pharmaceutics, 2015, 496, 601-608.	5.2	4
32	Nose-to-Brain Delivery of Diazepam from an Intranasal Aqua-Triggered In-Situ (ATIS) Gelling Microemulsion: Monitoring Brain Uptake by Microdialysis. European Journal of Drug Metabolism and Pharmacokinetics, 2020, 45, 785-799.	1.6	2