Oscar W Perez-Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5124570/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of composition and thermal pretreatment on properties of Ni–Mg–Al catalysts for CO2 reforming of methane. Applied Catalysis A: General, 2006, 303, 234-244.	2.2	152
2	Ethanol dehydration to diethyl ether over Cu-Fe/ZSM-5 catalysts. Catalysis Communications, 2018, 104, 32-36.	1.6	60
3	Carbon dioxide methanation over Ni-Cu/SiO2 catalysts. Energy Conversion and Management, 2020, 203, 112214.	4.4	56
4	Catalytic Decomposition of Methane Over M–Co–Al Catalysts (MÂ=ÂMg, Ni, Zn, Cu). Catalysis Letters, 2011, 141, 1018-1025.	1.4	51
5	Adsorbents derived from hydrotalcites for the removal of diclofenac in wastewater. Applied Clay Science, 2019, 175, 150-158.	2.6	51
6	Tuning the acidity and reducibility of Fe/ZSM-5 catalysts for methane dehydroaromatization. Fuel, 2019, 236, 1293-1300.	3.4	51
7	Aromatization of Methane Over Mo-Fe/ZSM-5 Catalysts. Catalysis Letters, 2009, 131, 194-202.	1.4	50
8	The catalytic behavior of zinc oxide prepared from various precursors and by different methods. Materials Research Bulletin, 2005, 40, 2089-2099.	2.7	46
9	Biogas dry reforming for hydrogen production over Ni-M-Al catalysts (M = Mg, Li, Ca, La, Cu, Co, Zn). International Journal of Hydrogen Energy, 2019, 44, 17750-17766.	3.8	46
10	Hydrogen production by glycerol steam reforming over Ni based catalysts prepared by different methods. Biomass and Bioenergy, 2019, 130, 105358.	2.9	43
11	Catalytic decomposition of methane over Ni/SiO2: influence of Cu addition. Reaction Kinetics, Mechanisms and Catalysis, 2017, 120, 181-193.	0.8	38
12	Hydrogen production by methane decomposition over Co-Al mixed oxides derived from hydrotalcites: Effect of the catalyst activation with H 2 or CH 4. International Journal of Hydrogen Energy, 2017, 42, 7895-7907.	3.8	37
13	Dry reforming of methane using modified sodium and protonated titanate nanotube catalysts. Fuel, 2019, 253, 713-721.	3.4	35
14	Decomposition of methane over Co3â^'xAlxO4 (x=0–2) coprecipitated catalysts: The role of CoÂphases in the activity and stability. International Journal of Hydrogen Energy, 2017, 42, 29756-29772.	3.8	34
15	FTIR spectroscopy analysis for monitoring biodiesel production by heterogeneous catalyst. Vibrational Spectroscopy, 2019, 105, 102990.	1.2	34
16	CO2 adsorption using solids with different surface and acid-base properties. Journal of Environmental Chemical Engineering, 2020, 8, 103823.	3.3	34
17	Catalytic conversion of glycerol to olefins over Fe, Mo, and Nb catalysts supported on zeolite ZSM-5. Renewable Energy, 2019, 136, 828-836.	4.3	32
18	CO2 conversion to methane using Ni/SiO2 catalysts promoted by Fe, Co and Zn. Journal of Environmental Chemical Engineering, 2021, 9, 104629.	3.3	29

OSCAR W PEREZ-LOPEZ

#	Article	IF	CITATIONS
19	Hydrogen Production by Methane Decomposition Over Cu–Co–Al Mixed Oxides Activated Under Reaction Conditions. Catalysis Letters, 2014, 144, 796-804.	1.4	28
20	Synthesis Gas Production by Steam Reforming of Ethanol over M-Ni-Al Hydrotalcite-type Catalysts; M=Mg, Zn, Mo, Co. Procedia Engineering, 2012, 42, 1805-1815.	1.2	27
21	CO ₂ methanation over Ni–Al and Co–Al LDH-derived catalysts: the role of basicity. Sustainable Energy and Fuels, 2020, 4, 5747-5756.	2.5	25
22	Conversion of furan over gallium and zinc promoted ZSM-5: The effect of metal and acid sites. Fuel Processing Technology, 2020, 201, 106319.	3.7	24
23	Dry reforming of methane at moderate temperatures over modified Co-Al Co-precipitated catalysts. Materials Research, 2014, 17, 1047-1055.	0.6	22
24	New insights on the electronic factor of the SMSI effect in Pd/TiO2 nanoparticles. Applied Surface Science, 2022, 574, 151647.	3.1	22
25	Characterization of analytical fast pyrolysis vapors of medium-density fiberboard (mdf) using metal-modified HZSM-5. Journal of Analytical and Applied Pyrolysis, 2018, 136, 87-95.	2.6	21
26	Graphene and carbon nanotubes by CH4 decomposition over Co Al catalysts. Materials Chemistry and Physics, 2019, 226, 6-19.	2.0	21
27	Biogas dry reforming using Ni–Al-LDH catalysts reconstructed with Mg and Zn. International Journal of Hydrogen Energy, 2021, 46, 20359-20376.	3.8	21
28	Biogas dry reforming over Ni-M-Al (M = K, Na and Li) layered double hydroxide-derived catalysts. Catalysis Today, 2021, 381, 96-107.	2.2	20
29	Cu–Ca–Al catalysts derived from hydrocalumite and their application to ethanol dehydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 497-511.	0.8	19
30	Biogas dry reforming over Ni-Al catalyst: Suppression of carbon deposition by catalyst preparation and activation. International Journal of Hydrogen Energy, 2020, 45, 6549-6562.	3.8	19
31	Methane dehydroaromatization over Fe-M/ZSM-5 catalysts (M= Zr, Nb, Mo). Microporous and Mesoporous Materials, 2020, 295, 109961.	2.2	17
32	Effect of concentration in the equilibrium and kinetics of adsorption of acetylsalicylic acid on ZnAl layered double hydroxide. Journal of Environmental Chemical Engineering, 2020, 8, 103991.	3.3	17
33	Phosphate removal from industrial wastewaters using layered double hydroxides. Environmental Technology (United Kingdom), 2021, 42, 1-11.	1.2	17
34	Catalytic properties of Cu–Mg–Al hydrotalcites, their oxides and reduced phases for ethanol dehydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2018, 123, 689-705.	0.8	16
35	Decomposition of Ethanol Over Ni-Al Catalysts: Effect of Copper Addition. Procedia Engineering, 2012, 42, 335-345.	1.2	15
36	Ionic-tagged catalytic systems applied to the ethenolysis of methyl oleate. Catalysis Communications, 2014, 53, 57-61.	1.6	14

OSCAR W PEREZ-LOPEZ

#	Article	IF	CITATIONS
37	Hydrothermal synthesis of analcime without template. Journal of Crystal Growth, 2020, 532, 125424.	0.7	13
38	Solid leather wastes as adsorbents for cationic and anionic dye removal. Environmental Technology (United Kingdom), 2022, 43, 1285-1293.	1.2	10
39	Oxidative coupling of methane to light olefins using waste eggshell as catalyst. Inorganic Chemistry Communication, 2020, 116, 107928.	1.8	10
40	Transesterification of different vegetable oils using eggshells from various sources as catalyst. Vibrational Spectroscopy, 2020, 109, 103087.	1.2	9
41	Conversão catalÃŧica do etanol sobre catalisadores suportados em ZSM-5. Ceramica, 2018, 64, 1-9.	0.3	8
42	Conversion of methane to benzene via oxidative coupling and dehydroaromatization. Studies in Surface Science and Catalysis, 2007, 167, 31-36.	1.5	7
43	Synthesis and properties of template-free mesoporous alumina and its application in gas phase dehydration of glycerol. Powder Technology, 2021, 378, 737-745.	2.1	7
44	Biogas Dry Reforming Over Ni–Mg–La–Al Catalysts: Influence of La/Mg Ratio. Catalysis Letters, 2021, 151, 267-280.	1.4	6
45	Preparation of alumina with different precipitants for the gas phase dehydration of glycerol and their characterization by thermal analysis. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1387-1398.	2.0	5
46	Deactivation control in CO2 reforming of methane over Ni–Mg–Al catalyst. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 159-178.	0.8	5
47	Influence of the Ni/Al ratio on Ni–Al mixed oxides and their catalytic properties for ethanol decomposition. Journal of Thermal Analysis and Calorimetry, 2017, 128, 735-744.	2.0	4
48	Experimental and DFT analysis of the acid and reduction properties of Fe-Cu/ZSM-5. Microporous and Mesoporous Materials, 2021, 314, 110860.	2.2	4
49	Dry Reforming of Methane over Mg-Co-Al Mixed Oxides Catalysts: Effect of Mg Content and Reduction Conditions. Chemical Engineering Communications, 0, , .	1.5	3
50	Nature of the interactions between Fe and Zr for the methane dehydroaromatization reaction in ZSM-5. Journal of Molecular Structure, 2020, 1220, 128720.	1.8	2
51	Light olefins by methane partial oxidation using hydrated waste eggshell as catalyst. Fuel, 2021, 300, 120947.	3.4	2