
Martin D Crespi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5123715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The IncRNA MARS modulates the epigenetic reprogramming of the marneral cluster in response to ABA. Molecular Plant, 2022, 15, 840-856.	3.9	25
2	Non-B DNA structures emerging from plant genomes. Trends in Plant Science, 2022, , .	4.3	4
3	Silencing the conserved small nuclear ribonucleoprotein SmD1 target gene alters susceptibility to root-knot nematodes in plants. Plant Physiology, 2022, 189, 1741-1756.	2.3	11
4	Regulatory long non-coding RNAs in root growth and development. Biochemical Society Transactions, 2022, 50, 403-412.	1.6	6
5	The Rice Serine/Arginine Splicing Factor RS33 Regulates Pre-mRNA Splicing during Abiotic Stress Responses. Cells, 2022, 11, 1796.	1.8	14
6	The rootâ€knot nematode effector MiEFF18 interacts with the plant core spliceosomal protein SmD1 required for giant cell formation. New Phytologist, 2021, 229, 3408-3423.	3.5	31
7	Plant Long Noncoding RNAs: New Players in the Field of Post-Transcriptional Regulations. Non-coding RNA, 2021, 7, 12.	1.3	18
8	Insights into long non-coding RNA regulation of anthocyanin carrot root pigmentation. Scientific Reports, 2021, 11, 4093.	1.6	9
9	Overlapping roles of spliceosomal components SF3B1 and PHF5A in rice splicing regulation. Communications Biology, 2021, 4, 529.	2.0	8
10	The IncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold. Molecular Plant, 2021, 14, 937-948.	3.9	72
11	Polycomb-dependent differential chromatin compartmentalization determines gene coregulation in <i>Arabidopsis</i> . Genome Research, 2021, 31, 1230-1244.	2.4	36
12	ChronoRoot: High-throughput phenotyping by deep segmentation networks reveals novel temporal parameters of plant root system architecture. GigaScience, 2021, 10, .	3.3	13
13	The <i>Arabidopsis</i> lnc <scp>RNA </scp> <i><scp>ASCO</scp></i> modulates the transcriptome through interaction with splicing factors. EMBO Reports, 2020, 21, e48977.	2.0	57
14	Landscape of the Noncoding Transcriptome Response of Two Arabidopsis Ecotypes to Phosphate Starvation. Plant Physiology, 2020, 183, 1058-1072.	2.3	23
15	Long noncoding RNAs shape transcription in plants. Transcription, 2020, 11, 160-171.	1.7	24
16	GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5′ and 3′ ends of its target genes. Nucleic Acids Research, 2020, 48, 5953-5966.	6.5	44
17	To keep or not to keep: mRNA stability and translatability in root nodule symbiosis. Current Opinion in Plant Biology, 2020, 56, 109-117.	3.5	8
18	Evolution of the Small Family of Alternative Splicing Modulators Nuclear Speckle RNA-Binding Proteins in Plants. Genes, 2020, 11, 207.	1.0	10

#	Article	IF	CITATIONS
19	R-Loop Mediated trans Action of the APOLO Long Noncoding RNA. Molecular Cell, 2020, 77, 1055-1065.e4.	4.5	164
20	High-quality genome sequence of white lupin provides insight into soil exploration and seed quality. Nature Communications, 2020, 11, 492.	5.8	90
21	Wheat chromatin architecture is organized in genome territories and transcription factories. Genome Biology, 2020, 21, 104.	3.8	99
22	Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. PLoS Pathogens, 2020, 16, e1008401.	2.1	38
23	Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. , 2020, 16, e1008401.		Ο
24	Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. , 2020, 16, e1008401.		0
25	Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. , 2020, 16, e1008401.		Ο
26	Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. , 2020, 16, e1008401.		0
27	Role of MPK4 in pathogen-associated molecular pattern-triggered alternative splicing in Arabidopsis. , 2020, 16, e1008401.		Ο
28	Heterocyst Formation under the Control of a Cell-Specific Antisense RNA. Plant and Cell Physiology, 2019, 60, 1631-1632.	1.5	0
29	RNA-Mediated Plant Behavior. Plant and Cell Physiology, 2019, 60, 1893-1896.	1.5	3
30	Alternative Splicing in the Regulation of Plant–Microbe Interactions. Plant and Cell Physiology, 2019, 60, 1906-1916.	1.5	61
31	CRISPR directed evolution of the spliceosome for resistance to splicing inhibitors. Genome Biology, 2019, 20, 73.	3.8	99
32	Assessing the Response of Small RNA Populations to Allopolyploidy Using Resynthesized Brassica napus Allotetraploids. Molecular Biology and Evolution, 2019, 36, 709-726.	3.5	22
33	Thermopriming triggers splicing memory in Arabidopsis. Journal of Experimental Botany, 2018, 69, 2659-2675.	2.4	119
34	Splicing regulation by long noncoding RNAs. Nucleic Acids Research, 2018, 46, 2169-2184.	6.5	226
35	Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions. Journal of Experimental Botany, 2018, 69, 2847-2862.	2.4	56
36	Whole-genome landscape of Medicago truncatula symbiotic genes. Nature Plants, 2018, 4, 1017-1025.	4.7	192

#	Article	IF	CITATIONS
37	Nuclear Speckle RNA Binding Proteins Remodel Alternative Splicing and the Non-coding Arabidopsis Transcriptome to Regulate a Cross-Talk Between Auxin and Immune Responses. Frontiers in Plant Science, 2018, 9, 1209.	1.7	41
38	Stable Inactivation of MicroRNAs in Medicago truncatula Roots. Methods in Molecular Biology, 2018, 1822, 123-132.	0.4	3
39	Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics. Methods in Molecular Biology, 2018, 1822, 205-239.	0.4	4
40	Plant Epigenetics: Non-coding RNAs as Emerging Regulators. RNA Technologies, 2017, , 129-147.	0.2	0
41	Alternative splicing: The lord of the rings. Nature Plants, 2017, 3, 17065.	4.7	5
42	The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature, 2017, 546, 148-152.	13.7	579
43	Global analysis of ribosome-associated noncoding RNAs unveils new modes of translational regulation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10018-E10027.	3.3	168
44	Antisense movement on the clock. New Phytologist, 2017, 216, 626-628.	3.5	4
45	The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility. Genome Biology, 2017, 18, 114.	3.8	53
46	The MicroRNA390/TAS3 Pathway Mediates Symbiotic Nodulation and Lateral Root Growth. Plant Physiology, 2017, 174, 2469-2486.	2.3	67
47	<scp>TMV</scp> induces <scp>RNA</scp> decay pathways to modulate gene silencing and disease symptoms. Plant Journal, 2017, 89, 73-84.	2.8	28
48	Arabidopsis <scp>CLAVATA</scp> 1 and <scp>CLAVATA</scp> 2 receptors contribute toÂ <i>Ralstonia solanacearum</i> pathogenicity through a miR169â€dependent pathway. New Phytologist, 2016, 211, 502-515.	3.5	74
49	Small RNA profiles in soybean primary root tips under water deficit. BMC Systems Biology, 2016, 10, 126.	3.0	33
50	The Nuclear Ribonucleoprotein SmD1 Interplays with Splicing, RNA Quality Control, and Posttranscriptional Gene Silencing in Arabidopsis. Plant Cell, 2016, 28, 426-438.	3.1	46
51	The chloroplastic DEVHâ€box RNA helicase <scp>INCREASED SIZE EXCLUSION LIMIT 2</scp> involved in plasmodesmata regulation is required for group II intron splicing. Plant, Cell and Environment, 2016, 39, 165-173.	2.8	36
52	Put your 3D glasses on: plant chromatin is on show. Journal of Experimental Botany, 2016, 67, 3205-3221.	2.4	59
53	Noncoding RNAs, Emerging Regulators in Root Endosymbioses. Molecular Plant-Microbe Interactions, 2016, 29, 170-180.	1.4	44
54	One Gene, Many Proteins: Mapping Cell-Specific Alternative Splicing in Plants. Developmental Cell, 2016, 39, 383-385.	3.1	18

#	Article	IF	CITATIONS
55	Detection of generic differential RNA processing events from RNA-seq data. RNA Biology, 2016, 13, 59-67.	1.5	27
56	LHP1 Regulates H3K27me3 Spreading and Shapes the Three-Dimensional Conformation of the Arabidopsis Genome. PLoS ONE, 2016, 11, e0158936.	1.1	97
57	A SWI/SNF Chromatin Remodelling Protein Controls Cytokinin Production through the Regulation of Chromatin Architecture. PLoS ONE, 2015, 10, e0138276.	1.1	25
58	In plants, decapping prevents RDR6-dependent production of small interfering RNAs from endogenous mRNAs. Nucleic Acids Research, 2015, 43, 2902-2913.	6.5	107
59	Battles and hijacks: noncoding transcription in plants. Trends in Plant Science, 2015, 20, 362-371.	4.3	176
60	A phylogenetically conserved group of NF-Y transcription factors interact to control nodulation in legumes. Plant Physiology, 2015, 169, pp.01144.2015.	2.3	72
61	Abiotic Stress Responses in Legumes: Strategies Used toÂCope with Environmental Challenges. Critical Reviews in Plant Sciences, 2015, 34, 237-280.	2.7	212
62	A mi <scp>R</scp> 169 isoform regulates specific <scp>NF</scp> â€ <scp>YA</scp> targets and root architecture in <scp>A</scp> rabidopsis. New Phytologist, 2014, 202, 1197-1211.	3.5	192
63	The small RNA diversity from Medicago truncatularoots under biotic interactions evidences the environmental plasticity of the miRNAome. Genome Biology, 2014, 15, 457.	3.8	78
64	A <i>Medicago truncatula rdr6</i> allele impairs transgene silencing and endogenous phased si <scp>RNA</scp> production but not development. Plant Biotechnology Journal, 2014, 12, 1308-1318.	4.1	5
65	Long Noncoding RNA Modulates Alternative Splicing Regulators in Arabidopsis. Developmental Cell, 2014, 30, 166-176.	3.1	311
66	The BAF60 Subunit of the SWI/SNF Chromatin-Remodeling Complex Directly Controls the Formation of a Gene Loop at <i>FLOWERING LOCUS C</i> in <i>Arabidopsis</i> Å. Plant Cell, 2014, 26, 538-551.	3.1	82
67	Noncoding Transcription by Alternative RNA Polymerases Dynamically Regulates an Auxin-Driven Chromatin Loop. Molecular Cell, 2014, 55, 383-396.	4.5	330
68	Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. Functional Plant Biology, 2013, 40, 1208.	1.1	81
69	In silico identification and in vivo validation of a set of evolutionary conserved plant root-specific cis-regulatory elements. Mechanisms of Development, 2013, 130, 70-81.	1.7	6
70	Selective recruitment of m <scp>RNA</scp> s and mi <scp>RNA</scp> s to polyribosomes in response to rhizobia infection in <i><scp>M</scp>edicago truncatula</i> . Plant Journal, 2013, 73, 289-301.	2.8	70
71	Analyzing Small and Long RNAs in Plant Development Using Non-radioactive In Situ Hybridization. Methods in Molecular Biology, 2013, 959, 303-316.	0.4	9
72	miR396 affects mycorrhization and root meristem activity in the legume <i><scp>M</scp>edicago truncatula</i> . Plant Journal, 2013, 74, 920-934.	2.8	186

#	Article	IF	CITATIONS
73	Small RNA pathways and diversity in model legumes: lessons from genomics. Frontiers in Plant Science, 2013, 4, 236.	1.7	30
74	Cytoplasmic and nuclear quality control and turnover of single-stranded RNA modulate post-transcriptional gene silencing in plants. Nucleic Acids Research, 2013, 41, 4699-4708.	6.5	99
75	Dual function of MIPS1 as a metabolic enzyme and transcriptional regulator. Nucleic Acids Research, 2013, 41, 2907-2917.	6.5	35
76	Independent Activity of the Homologous Small Regulatory RNAs AbcR1 and AbcR2 in the Legume Symbiont Sinorhizobium meliloti. PLoS ONE, 2013, 8, e68147.	1.1	61
77	Localization of a Bacterial Group II Intron-Encoded Protein in Eukaryotic Nuclear Splicing-Related Cell Compartments. PLoS ONE, 2013, 8, e84056.	1.1	8
78	Analyzing Protein Distribution in Plant Tissues Using "Whole-Mount―Immunolocalization. Methods in Molecular Biology, 2013, 959, 317-322.	0.4	1
79	Two Direct Targets of Cytokinin Signaling Regulate Symbiotic Nodulation in <i>Medicago truncatula</i> À Â. Plant Cell, 2012, 24, 3838-3852.	3.1	136
80	Comparative Transcriptomic Analysis of Salt Adaptation in Roots of Contrasting Medicago truncatula Genotypes. Molecular Plant, 2012, 5, 1068-1081.	3.9	75
81	Complexity of miRNA-dependent regulation in root symbiosis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1570-1579.	1.8	55
82	Cytoplasmic Arabidopsis AGO7 accumulates in membrane-associated siRNA bodies and is required for ta-siRNA biogenesis. EMBO Journal, 2012, 31, 1704-1713.	3.5	121
83	Dual involvement of a <i>Medicago truncatula</i> NAC transcription factor in root abiotic stress response and symbiotic nodule senescence. Plant Journal, 2012, 70, 220-230.	2.8	111
84	Dual RNAs in plants. Biochimie, 2011, 93, 1950-1954.	1.3	41
85	MtCRE1â€dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in <i>Medicago truncatula</i> . Plant Journal, 2011, 65, 622-633.	2.8	257
86	Regulation of nonsymbiotic and truncated hemoglobin genes of <i>Lotus japonicus</i> in plant organs and in response to nitric oxide and hormones. New Phytologist, 2011, 189, 765-776.	3.5	71
87	Transcriptional and postâ€ŧranscriptional regulation of a NAC1 transcription factor in <i>Medicago truncatula</i> roots. New Phytologist, 2011, 191, 647-661.	3.5	47
88	Impact of the Environment on Root Architecture in Dicotyledoneous Plants. , 2011, , 113-132.		6
89	MicroRNAs as regulators of root development and architecture. Plant Molecular Biology, 2011, 77, 47-58.	2.0	117
90	Long Nonprotein-Coding RNAs in Plants. Progress in Molecular and Subcellular Biology, 2011, 51, 179-200.	0.9	9

#	Article	IF	CITATIONS
91	A Novel fry1 Allele Reveals the Existence of a Mutant Phenotype Unrelated to 5′->3′ Exoribonuclease (XRN) Activities in Arabidopsis thaliana Roots. PLoS ONE, 2011, 6, e16724.	1.1	64
92	Small RNA in Legumes. , 2011, , 121-138.		0
93	Biological Treatment of a Textile Effluent After Electrochemical Oxidation of Reactive Dyes. Water Environment Research, 2010, 82, 176-182.	1.3	37
94	Non-Protein-Coding RNAs and their Interacting RNA-Binding Proteins in the Plant Cell Nucleus. Molecular Plant, 2010, 3, 729-739.	3.9	33
95	A novel RNA-binding peptide regulates the establishment of the <i>Medicago truncatula-Sinorhizobium meliloti</i> nitrogen-fixing symbiosis. Plant Journal, 2010, 62, 24-38.	2.8	34
96	The <i>Compact Root Architecture1</i> Gene Regulates Lignification, Flavonoid Production, and Polar Auxin Transport in <i>Medicago truncatula</i> Â A. Plant Physiology, 2010, 153, 1597-1607.	2.3	41
97	miR390, <i>Arabidopsis TAS3</i> tasiRNAs, and Their <i>AUXIN RESPONSE FACTOR</i> Targets Define an Autoregulatory Network Quantitatively Regulating Lateral Root Growth. Plant Cell, 2010, 22, 1104-1117.	3.1	512
98	The LOB-like transcription factor MtLBD1 controls <i>Medicago truncatula</i> root architecture under salt stress. Plant Signaling and Behavior, 2010, 5, 1666-1668.	1.2	39
99	Cleavage of a non-conserved target by a specific miR156 isoform in root apexes of <i>Medicago truncatula</i> . Plant Signaling and Behavior, 2010, 5, 328-331.	1.2	32
100	Small RNA Diversity in Plants and its Impact in Development. Current Genomics, 2010, 11, 14-23.	0.7	88
101	Environmental Regulation of Lateral Root Emergence in <i>Medicago truncatula</i> Requires the HD-Zip I Transcription Factor HB1. Plant Cell, 2010, 22, 2171-2183.	3.1	156
102	Novel long non-protein coding RNAs involved in <i>Arabidopsis</i> differentiation and stress responses. Genome Research, 2009, 19, 57-69.	2.4	390
103	Non-protein coding RNAs, a diverse class of gene regulators, and their action in plants. RNA Biology, 2009, 6, 161-164.	1.5	11
104	Genome-Wide <i>Medicago truncatula</i> Small RNA Analysis Revealed Novel MicroRNAs and Isoforms Differentially Regulated in Roots and Nodules. Plant Cell, 2009, 21, 2780-2796.	3.1	270
105	A Novel Plant Leucine-Rich Repeat Receptor Kinase Regulates the Response of <i>Medicago truncatula</i> Roots to Salt Stress. Plant Cell, 2009, 21, 668-680.	3.1	148
106	Identification of transcription factors involved in root apex responses to salt stress in Medicago truncatula. Molecular Genetics and Genomics, 2009, 281, 55-66.	1.0	76
107	Plant root growth, architecture and function. Plant and Soil, 2009, 321, 153-187.	1.8	573
108	Plant polycistronic precursors containing non-homologous microRNAs target transcripts encoding functionally related proteins. Genome Biology, 2009, 10, R136.	13.9	80

#	Article	IF	CITATIONS
109	Endogenous TasiRNAs Mediate Non-Cell Autonomous Effects on Gene Regulation in Arabidopsis thaliana. PLoS ONE, 2009, 4, e5980.	1.1	92
110	Translational and structural analysis of the shortest legume ENOD40 gene in Lupinus luteus Acta Biochimica Polonica, 2009, 56, .	0.3	8
111	MicroRNA166 controls root and nodule development in <i>Medicagoâ€∫truncatula</i> . Plant Journal, 2008, 54, 876-887.	2.8	298
112	Cytokinin: secret agent of symbiosis. Trends in Plant Science, 2008, 13, 115-120.	4.3	170
113	De Novo Organ Formation from Differentiated Cells: Root Nodule Organogenesis. Science Signaling, 2008, 1, re11.	1.6	110
114	A mutant ankyrin protein kinase from Medicago sativa affects Arabidopsis adventitious roots. Functional Plant Biology, 2008, 35, 92.	1.1	15
115	Differential Expression of the TFIIIA Regulatory Pathway in Response to Salt Stress between <i>Medicago truncatula</i> Genotypes. Plant Physiology, 2007, 145, 1521-1532.	2.3	68
116	How the Environment Regulates Root Architecture in Dicots. Advances in Botanical Research, 2007, 46, 35-74.	0.5	23
117	Riboregulators in plant development. Biochemical Society Transactions, 2007, 35, 1638-1642.	1.6	25
118	Identification of regulatory pathways involved in the reacquisition of root growth after salt stress in Medicago truncatula. Plant Journal, 2007, 51, 1-17.	2.8	112
119	MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes and Development, 2006, 20, 3084-3088.	2.7	450
120	Cross-talk between ethylene and drought signalling pathways is mediated by the sunflower Hahb-4 transcription factor. Plant Journal, 2006, 48, 125-137.	2.8	169
121	A CDPK isoform participates in the regulation of nodule number inMedicago truncatula. Plant Journal, 2006, 48, 843-856.	2.8	53
122	Characterization of 43 Non-Protein-Coding mRNA Genes in Arabidopsis, Including the MIR162a-Derived Transcripts. Plant Physiology, 2006, 140, 1192-1204.	2.3	130
123	TheMedicago truncatulaCRE1 Cytokinin Receptor Regulates Lateral Root Development and Early Symbiotic Interaction withSinorhizobium meliloti. Plant Cell, 2006, 18, 2680-2693.	3.1	467
124	GuaB Activity Is Required in Rhizobium tropici During the Early Stages of Nodulation of Determinate Nodules but Is Dispensable for the Sinorhizobium meliloti-Alfalfa Symbiotic Interaction. Molecular Plant-Microbe Interactions, 2005, 18, 742-750.	1.4	7
125	Enod40, a Short Open Reading Frame–Containing mRNA, Induces Cytoplasmic Localization of a Nuclear RNA Binding Protein in Medicago truncatula. Plant Cell, 2004, 16, 1047-1059.	3.1	235
126	Phytohormonal responses in enod40-overexpressing plants of Medicago truncatula and rice. Physiologia Plantarum, 2004, 120, 132-139.	2.6	13

#	Article	IF	CITATIONS
127	Role of Plasmodesmata Regulation in Plant Development. Advances in Botanical Research, 2004, 41, 195-243.	0.5	3
128	Regulation of CDPK isoforms during tuber development. Plant Molecular Biology, 2003, 52, 1011-1024.	2.0	38
129	A Krüppel-like transcription factor gene is involved in salt stress responses in Medicago spp Plant and Soil, 2003, 257, 1-9.	1.8	28
130	Ankyrin protein kinases: a novel type of plant kinase gene whose expression is induced by osmotic stress in alfalfa. Plant Molecular Biology, 2003, 51, 555-566.	2.0	36
131	StCDPK1 is expressed in potato stolon tips and is induced by high sucrose concentration. Journal of Experimental Botany, 2003, 54, 2589-2591.	2.4	31
132	Nodule Initiation Involves the Creation of a New Symplasmic Field in Specific Root Cells of Medicago Species. Plant Cell, 2003, 15, 2778-2791.	3.1	68
133	The Endosymbiosis-Induced Genes ENOD40 and CCS52a Are Involved in Endoparasitic-Nematode Interactions in Medicago truncatula. Molecular Plant-Microbe Interactions, 2002, 15, 1008-1013.	1.4	77
134	Early Symbiotic Responses Induced by Sinorhizobium meliloti ilvC Mutants in Alfalfa. Molecular Plant-Microbe Interactions, 2001, 14, 55-62.	1.4	8
135	Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 15366-15371.	3.3	56
136	Translational and Structural Requirements of the Early Nodulin Gene enod40 , a Short-Open Reading Frame-Containing RNA, for Elicitation of a Cell-Specific Growth Response in the Alfalfa Root Cortex. Molecular and Cellular Biology, 2001, 21, 354-366.	1.1	106
137	Expression Profiles of 22 Novel Molecular Markers for Organogenetic Pathways Acting in Alfalfa Nodule Development. Molecular Plant-Microbe Interactions, 2000, 13, 96-106.	1.4	53
138	Temporal and Spatial Order of Events During the Induction of Cortical Cell Divisions in White Clover by Rhizobium leguminosarum bv. trifolii Inoculation or Localized Cytokinin Addition. Molecular Plant-Microbe Interactions, 2000, 13, 617-628.	1.4	135
139	Molecular Mechanisms in Root Nodule Development. Journal of Plant Growth Regulation, 2000, 19, 155-166.	2.8	87
140	Oxygen Regulation of a Nodule-Located Carbonic Anhydrase in Alfalfa. Plant Physiology, 2000, 124, 1059-1068.	2.3	51
141	Cell Cycle Control in Root Nodule Organogenesis. , 2000, , 223-226.		2
142	A Krüppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis. Genes and Development, 2000, 14, 475-482.	2.7	72
143	Functional Characterization of a Krüppel-Like Zinc Finger Gene Induced During Nodule Development. , 2000, , 231-232.		0
144	A Krüppel-like zinc finger protein is involved in nitrogen-fixing root nodule organogenesis. Genes and Development, 2000, 14, 475-82.	2.7	62

#	Article	IF	CITATIONS
145	Alteration of enod40 Expression Modifies Medicago truncatual Root Nodule Development Induced by Sinorhizobium meliloti. Plant Cell, 1999, 11, 1953.	3.1	1
146	Alteration of enod40 Expression Modifies Medicago truncatulaRoot Nodule Development Induced by Sinorhizobium meliloti. Plant Cell, 1999, 11, 1953-1965.	3.1	127
147	Identification of Novel Putative Regulatory Genes Induced During Alfalfa Nodule Development with a Cold-Plaque Screening Procedure. Molecular Plant-Microbe Interactions, 1998, 11, 358-366.	1.4	30
148	enod40 induces dedifferentiation and division of root cortical cells in legumes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 8901-8906.	3.3	134
149	Cloning of a WD-repeat-containing gene from alfalfa (Medicago sativa): a role in hormone-mediated cell division?. Plant Molecular Biology, 1997, 34, 771-780.	2.0	41
150	A carbonic anhydrase gene is induced in the nodule primordium and its cell-specific expression is controlled by the presence of Rhizobium during development. Plant Journal, 1997, 11, 407-420.	2.8	88
151	Nod factors and cytokinins induce similar cortical cell division, amyloplast deposition and MsEnod12A expression patterns in alfalfa roots. Plant Journal, 1996, 10, 91-105.	2.8	134
152	Alfalfa Enod12 Genes Are Differentially Regulated during Nodule Development by Nod Factors and Rhizobium Invasion. Plant Physiology, 1994, 105, 585-592.	2.3	74
153	The fas operon of Rhodococcus fascians encodes new genes required for efficient fasciation of host plants. Journal of Bacteriology, 1994, 176, 2492-2501.	1.0	121
154	Isolation and characterization of genes encoding chaperonin 60β from Arabidopsis thaliana. Gene, 1992, 111, 175-181.	1.0	25
155	Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO Journal, 1992, 11, 795-804.	3.5	81
156	Sucrose Synthase Expression during Cold Acclimation in Wheat. Plant Physiology, 1991, 96, 887-891.	2.3	80
157	Legume Root Architecture: A Peculiar Root System. , 0, , 239-287.		5