Shuai Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5123601/publications.pdf Version: 2024-02-01

SHUAL WANG

#	Article	IF	CITATIONS
1	Regulating surface chemistry of separator with LiF for advanced Li-S batteries. Frontiers in Energy, 2022, 16, 601-606.	2.3	4
2	Nanoscale corrosion investigation of surface nanocrystallized 7150 Al alloy in 3.5Âwt% NaCl solution by using FIB-TEM techniques. Corrosion Science, 2022, 195, 110021.	6.6	14
3	Regulating Li ₂ S Deposition by Ostwald Ripening in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2022, 14, 4204-4210.	8.0	16
4	Nitrogen, Oxygen odoped Vertical Graphene Arrays Coated 3D Flexible Carbon Nanofibers with High Silicon Content as an Ultrastable Anode for Superior Lithium Storage. Advanced Science, 2022, 9, e2104685.	11.2	42
5	Flexible Metal Electrodes by Femtosecond Laser-Activated Deposition for Human–Machine Interfaces. ACS Applied Materials & Interfaces, 2022, 14, 11971-11980.	8.0	12
6	Lattice rotation effect on the dislocation pattern of Cu deformed in tension. Philosophical Magazine, 2022, 102, 875-886.	1.6	1
7	Dislocation evolution in copper in the absence and presence of hydrogen. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 842, 143082.	5.6	1
8	A comparison of dislocation cellular patterns generated in Inconel 718 alloy and pure Ni fabricated by laser powder bed fusion. Vacuum, 2022, 199, 110974.	3.5	8
9	Nano-Treating Promoted Natural Aging Al-Zn-Mg-Cu Alloys. Journal of Composites Science, 2022, 6, 114.	3.0	4
10	Evolution of dislocation cellular pattern in Inconel 718 alloy fabricated by laser powder-bed fusion. Additive Manufacturing, 2022, 55, 102839.	3.0	1
11	Tailoring hydrogen embrittlement resistance of pure Ni by grain boundary engineering. Corrosion Communications, 2022, 6, 48-51.	6.0	5
12	Orientation dependence of dislocation structure in surface grain of pure copper deformed in tension. Acta Materialia, 2021, 203, 116474.	7.9	15
13	Microstructure, corrosion behavior and hydrogen evolution of USSP processed AZ31 magnesium alloy with a surface layer containing amorphous Fe-rich composite. International Journal of Hydrogen Energy, 2021, 46, 10172-10182.	7.1	8
14	Composite Electrolytes Based on Poly(Ethylene Oxide) and Lithium Borohydrides for All-Solid-State Lithium–Sulfur Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 5396-5404.	6.7	33
15	Fast Lithium Ionic Conductivity in Complex Hydrideâ€Sulfide Electrolytes by Double Anions Substitution. Small Methods, 2021, 5, e2100609.	8.6	14
16	Effect of Mo doping on the gaseous hydrogen embrittlement of a CoCrNi medium-entropy alloy. Corrosion Science, 2021, 189, 109628.	6.6	19
17	On the fracture process of intermediate temperature embrittlement of pure copper in electrical-assisted tension. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141979.	5.6	4
18	On the microstructure and tensile properties of Inconel 718 alloy fabricated by selective laser melting and conventional casting. Journal of Micromechanics and Molecular Physics, 2021, 06, .	1.2	7

Shuai Wang

#	Article	IF	CITATIONS
19	Embrittlement of 316L stainless steel in electropulsing treatment. Journal of Materials Research and Technology, 2020, 9, 10669-10678.	5.8	13
20	The microstructure and mechanical properties of copper in electrically assisted tension. Materials and Design, 2020, 196, 109171.	7.0	18
21	Microstructure, corrosion behaviour and thermal stability of AA 7150 after ultrasonic shot peening. Surface and Coatings Technology, 2020, 398, 126127.	4.8	30
22	Stable Sodium Metal Batteries via Manipulation of Electrolyte Solvation Structure. Small Methods, 2020, 4, 1900856.	8.6	73
23	Using real-time UV–visible spectrophotometer to assess an Al–Zn–Mg–Cu alloy's dissolution in acidic solution. Royal Society Open Science, 2020, 7, 200461.	2.4	3
24	On the failure of surface damage to assess the hydrogen-enhanced deformation ahead of crack tip in a cyclically loaded austenitic stainless steel. Scripta Materialia, 2019, 166, 102-106.	5.2	16
25	Assessment of the impact of hydrogen on the stress developed ahead of a fatigue crack. Acta Materialia, 2019, 174, 181-188.	7.9	19
26	A comparative characterization of defect structure in NiCo and NiFe equimolar solid solution alloys under in situ electron irradiation. Scripta Materialia, 2019, 166, 96-101.	5.2	5
27	Toward Phase and Catalysis Control: Tracking the Formation of Intermetallic Nanoparticles at Atomic Scale. CheM, 2019, 5, 1235-1247.	11.7	45
28	Enumeration of the hydrogen-enhanced localized plasticity mechanism for hydrogen embrittlement in structural materials. Acta Materialia, 2019, 165, 734-750.	7.9	295
29	Hydrogen-modified dislocation structures in a cyclically deformed ferritic-pearlitic low carbon steel. Acta Materialia, 2018, 144, 164-176.	7.9	48
30	Hydrogen embrittlement of the equi-molar FeNiCoCr alloy. Acta Materialia, 2018, 157, 218-227.	7.9	52
31	Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys. Acta Materialia, 2017, 126, 182-193.	7.9	133
32	Effect of Hydrogen on Fatigue-Crack Growth of a Ferritic-Pearlitic Low Carbon Steel. , 2017, , .		1
33	Influence of hydrogen on dislocation self-organization in Ni. Acta Materialia, 2017, 135, 96-102.	7.9	65
34	Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation. Scripta Materialia, 2016, 125, 5-9.	5.2	62
35	Effect of hydrogen environment on the separation of Fe grain boundaries. Acta Materialia, 2016, 107, 279-288.	7.9	106
36	Recent advances on hydrogen embrittlement of structural materials. International Journal of Fracture, 2015, 196, 223-243.	2.2	146

Shuai Wang

#	Article	IF	CITATIONS
37	Hydrogen-induced intergranular failure of iron. Acta Materialia, 2014, 69, 275-282.	7.9	204
38	Physical properties of α-Fe upon the introduction of H, He, C, and N. Solid State Communications, 2014, 195, 70-73.	1.9	8
39	Activation volume and density of mobile dislocations in hydrogen-charged iron. Acta Materialia, 2013, 61, 4734-4742.	7.9	66
40	Effects of hydrogen on activation volume and density of mobile dislocations in iron-based alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 562, 101-108.	5.6	42
41	Strain field of interstitial hydrogen atom in body-centered cubic iron and its effect on hydrogen–dislocation interaction. Scripta Materialia, 2013, 68, 249-252.	5.2	21
42	Hydrogen-induced change in core structures of {110}[111] edge and {110}[111] screw dislocations in iron. Scientific Reports, 2013, 3, 2760.	3.3	26
43	Phase Transition of Mg during Hydrogenation of Mg–Nb ₂ O ₅ Evaporated Composites. Journal of Physical Chemistry C, 2012, 116, 17089-17093.	3.1	2
44	Preparation of diamond-like carbon films by cathodic micro-arc discharge in aqueous solutions. Thin Solid Films, 2010, 518, 4211-4214.	1.8	18