Miklos Gyuranecz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5123523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evidence of Mycoplasma spp. transmission by migratory wild geese. Poultry Science, 2022, 101, 101526.	1.5	2
2	Identification and detection of mutations potentially associated with decreased susceptibility to macrolides and lincomycin in Mycoplasma anserisalpingitidis isolates. Veterinary Microbiology, 2022, 266, 109362.	0.8	3
3	Diversity of tick species and associated pathogens on peri-urban wild boars – First report of the zoonotic Babesia cf. crassa from Hungary. Ticks and Tick-borne Diseases, 2022, 13, 101936.	1.1	5
4	<i>In vitro</i> susceptibility of <i>Mycoplasma iowae</i> isolates to antimicrobial agents. Avian Pathology, 2022, 51, 374-380.	0.8	1
5	Decrease of <i>Mycoplasma gallisepticum</i> seroprevalence and introduction of new genotypes in Dutch commercial poultry during the years 2001–2018. Avian Pathology, 2021, 50, 52-60.	0.8	7
6	Minimal inhibitory concentration of seven antimicrobials to <i>Mycoplasma gallisepticum</i> and <i>Mycoplasma synoviae</i> isolates from six European countries. Avian Pathology, 2021, 50, 161-173.	0.8	14
7	Antimicrobial susceptibility monitoring of Mycoplasma hyopneumoniae isolated from seven European countries during 2015–2016. Veterinary Microbiology, 2021, 253, 108973.	0.8	2
8	Multilocus sequence typing of the goose pathogen Mycoplasma anserisalpingitidis. Veterinary Microbiology, 2021, 254, 108972.	0.8	6
9	Serological survey of Coxiella burnetii infections in dairy cattle, sheep, goats and zoo animals in Hungary – Short communication. Acta Veterinaria Hungarica, 2021, 69, 105-109.	0.2	2
10	Development of a molecular biological assay for the detection of markers related to decreased susceptibility to macrolides and lincomycin in Mycoplasma hyorhinis. Acta Veterinaria Hungarica, 2021, 69, 110-115.	0.2	3
11	Novel prophage-like sequences in Mycoplasma anserisalpingitidis. Infection, Genetics and Evolution, 2021, 92, 104886.	1.0	1
12	Mycoplasma species in the male reproductive organs and the fresh and frozen semen of the Hungarian native goose. Avian Pathology, 2021, 50, 1-19.	0.8	0
13	The distribution of lagomorph syphilis caused by Treponema paraluisleporidarum in Europe. European Journal of Wildlife Research, 2021, 67, 1.	0.7	2
14	A serological and molecular study on Francisella tularensis in rodents from Hamadan province, Western Iran. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 68, 101379.	0.7	7
15	Mutations potentially associated with decreased susceptibility to fluoroquinolones, macrolides and lincomycin in Mycoplasma synoviae. Veterinary Microbiology, 2020, 248, 108818.	0.8	6
16	Genotyping Mycoplasma hyorhinis by multi-locus sequence typing and multiple-locus variable-number tandem-repeat analysis. Veterinary Microbiology, 2020, 249, 108836.	0.8	7
17	Molecular Differentiation of Mycoplasma gallisepticum Outbreaks: A Last Decade Study on Italian Farms Using GTS and MLST. Vaccines, 2020, 8, 665.	2.1	12
18	Antimicrobial susceptibility of pathogenic mycoplasmas in chickens in Asia. Veterinary Microbiology, 2020, 250, 108840.	0.8	9

#	Article	IF	CITATIONS
19	Genetic Traces of the Francisella tularensis Colonization of Spain, 1998–2020. Microorganisms, 2020, 8, 1784.	1.6	1
20	Prevalence of Coxiella burnetii in Central and Eastern European dairy herds. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 72, 101489.	0.7	8
21	The core genome multi-locus sequence typing of Mycoplasma anserisalpingitidis. BMC Genomics, 2020, 21, 403.	1.2	11
22	Isolation of Mycoplasma anserisalpingitidis from swan goose (Anser cygnoides) in China. BMC Veterinary Research, 2020, 16, 178.	0.7	16
23	Development of mismatch amplification mutation assay for the rapid differentiation of <i>Mycoplasma gallisepticum</i> K vaccine strain from field isolates. Avian Pathology, 2020, 49, 317-324.	0.8	Ο
24	Anaplasmataceae closely related to Ehrlichia chaffeensis and Neorickettsia helminthoeca from birds in Central Europe, Hungary. Antonie Van Leeuwenhoek, 2020, 113, 1067-1073.	0.7	7
25	Development of molecular biological tools for the rapid determination of antibiotic susceptibility of Mycoplasma hyopneumoniae isolates. Veterinary Microbiology, 2020, 245, 108697.	0.8	5
26	Mycoplasma anserisalpingitidis sp. nov., isolated from European domestic geese (Anser anser) Tj ETQq0 0 0 rgB Microbiology, 2020, 70, 2369-2381.	T /Overlocl 0.8	k 10 Tf 50 467 26
27	Development of molecular assays for the rapid and cost-effective determination of fluoroquinolone, macrolide and lincosamide susceptibility of Mycoplasma synoviae isolates. PLoS ONE, 2020, 15, e0241647.	1.1	2
28	Serological screening for Coxiella burnetii in the context of early pregnancy loss in dairy cows. Acta Veterinaria Hungarica, 2020, 68, 305-309.	0.2	4
29	Combination therapy of rabies-infected mice with inhibitors of pro-inflammatory host response, antiviral compounds and human rabies immunoglobulin. Vaccine, 2019, 37, 4724-4735.	1.7	20
30	Detection of Mycoplasma anatis, M. anseris, M. cloacale and Mycoplasma sp. 1220 in waterfowl using species-specific PCR assays. PLoS ONE, 2019, 14, e0219071.	1.1	11
31	New antimicrobial susceptibility data from monitoring of Mycoplasma bovis isolated in Europe. Veterinary Microbiology, 2019, 238, 108432.	0.8	20
32	Molecular detection of vector-borne bacteria in bat ticks (Acari: Ixodidae, Argasidae) from eight countries of the Old and New Worlds. Parasites and Vectors, 2019, 12, 50.	1.0	91
33	Genotyping Mycoplasma gallisepticum by multilocus sequence typing. Veterinary Microbiology, 2019, 231, 191-196.	0.8	20
34	Development of Molecular Methods for Rapid Differentiation of Mycoplasma gallisepticum Vaccine Strains from Field Isolates. Journal of Clinical Microbiology, 2019, 57, .	1.8	12
35	Antibiotic susceptibility profiles of Mycoplasma hyorhinis strains isolated from swine in Hungary. Veterinary Microbiology, 2019, 228, 196-201.	0.8	18
36	Evaluation of in vitro inhibitory potential of type-I interferons and different antiviral compounds on rabies virus replication. Vaccine, 2019, 37, 4663-4672.	1.7	11

#	Article	IF	CITATIONS
37	Complete Genome Sequences of Three Mycoplasma anserisalpingitis (Mycoplasma sp. 1220) Strains. Microbiology Resource Announcements, 2019, 8, .	0.3	6
38	Brucella melitensis caused abortion in a serologically positive dromedary camel. Journal of Camel Practice and Research, 2019, 26, 1.	0.0	3
39	Assessing bat droppings and predatory bird pellets for vector-borne bacteria: molecular evidence of bat-associated Neorickettsia sp. in Europe. Antonie Van Leeuwenhoek, 2018, 111, 1707-1717.	0.7	18
40	A Serosurvey of Flavivirus Infection in Horses and Birds in Slovakia. Vector-Borne and Zoonotic Diseases, 2018, 18, 206-213.	0.6	30
41	Seroprevalence of Francisella tularensis in Austrian Hunting Dogs. Vector-Borne and Zoonotic Diseases, 2018, 18, 117-119.	0.6	6
42	Analyses of separate and concatenated cox1 and 18S rRNA gene sequences indicate that the bat piroplasm Babesia vesperuginis is phylogenetically close to Cytauxzoon felis and the â€~prototheilerid' Babesia conradae. Acta Veterinaria Hungarica, 2018, 66, 107-115.	0.2	9
43	Development of molecular methods for the rapid detection of antibiotic susceptibility of Mycoplasma bovis. Veterinary Microbiology, 2018, 213, 47-57.	0.8	11
44	Complete Genome Sequences of Mycoplasma anatis, M. anseris, and M. cloacale Type Strains. Microbiology Resource Announcements, 2018, 7, .	0.3	4
45	Antibiotic susceptibility testing of Mycoplasma hyopneumoniae field isolates from Central Europe for fifteen antibiotics by microbroth dilution method. PLoS ONE, 2018, 13, e0209030.	1.1	19
46	Genotyping Mycoplasma synoviae: Development of a multi-locus variable number of tandem-repeats analysis and comparison with current molecular typing methods. Veterinary Microbiology, 2018, 226, 41-49.	0.8	8
47	Genotyping Mycoplasma hyopneumoniae isolates based on multi-locus sequence typing, multiple-locus variable-number tandem repeat analysis and analysing gene p146. Veterinary Microbiology, 2018, 222, 85-90.	0.8	15
48	West Nile virus - a new infection in the Slovak Republic?. Central European Journal of Public Health, 2018, 26, S51-S55.	0.4	2
49	A Field Study of Plague and Tularemia in Rodents, Western Iran. Vector-Borne and Zoonotic Diseases, 2017, 17, 247-253.	0.6	29
50	Babesia genotypes in Haemaphysalis concinna collected from birds in Hungary reflect phylogeographic connections with Siberia and the Far East. Ticks and Tick-borne Diseases, 2017, 8, 666-670.	1.1	11
51	Mutations Associated with Decreased Susceptibility to Seven Antimicrobial Families in Field and Laboratory-Derived Mycoplasma bovis Strains. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	48
52	Screening of Hungarian cattle herds for seropositivity to Mycoplasma bovis. Acta Veterinaria Hungarica, 2017, 65, 166-172.	0.2	2
53	Impact of a freeway on the dispersal of ticks and Ixodes ricinus-borne pathogens: forested resting areas may become Lyme disease hotspots. Acta Veterinaria Hungarica, 2017, 65, 242-252.	0.2	8
54	Antibiotic susceptibility profiles of Mycoplasma synoviae strains originating from Central and Eastern Europe. BMC Veterinary Research, 2017, 13, 342.	0.7	42

#	Article	IF	CITATIONS
55	Development of mismatch amplification mutation assays for the differentiation of MS1 vaccine strain from wild-type Mycoplasma synoviae and MS-H vaccine strains. PLoS ONE, 2017, 12, e0175969.	1.1	11
56	Laboratory Investigations after Eye Drop Immunisation of Dromedaries with Live Attenuated <i>Brucellamelitensis</i> Rev 1 Vaccine. Journal of Camel Practice and Research, 2017, 24, 9.	0.0	1
57	Molecular screening for Anaplasmataceae in ticks and tsetse flies from Ethiopia. Acta Veterinaria Hungarica, 2016, 64, 65-70.	0.2	8
58	Antibiotic susceptibility profiles of Mycoplasma sp. 1220 strains isolated from geese in Hungary. BMC Veterinary Research, 2016, 12, 170.	0.7	20
59	Antimicrobial susceptibility of Bacillus anthracis strains from Hungary. Acta Veterinaria Hungarica, 2016, 64, 141-147.	0.2	4
60	Comparison of virulence of Francisella tularensis ssp. holarctica genotypes B.12 and B.FTNF002-00. BMC Veterinary Research, 2016, 13, 46.	0.7	19
61	Molecular analysis and MIRU-VNTR typing of Mycobacterium avium subsp. avium, â€~hominissuis' and silvaticum strains of veterinary origin. Infection, Genetics and Evolution, 2016, 40, 192-199.	1.0	11
62	Tularaemia: clinical aspects in Europe. Lancet Infectious Diseases, The, 2016, 16, 113-124.	4.6	187
63	Genotyping of Brucella melitensis strains from dromedary camels (Camelus dromedarius) from the United Arab Emirates with multiple-locus variable-number tandem repeat analysis. Veterinary Microbiology, 2016, 186, 8-12.	0.8	15
64	Complement sensitivity and factor H binding of European Francisella tularensis ssp. holarctica strains in selected animal species. Acta Veterinaria Hungarica, 2015, 63, 275-284.	0.2	2
65	Occurrence of <i>Coxiella burnetii</i> and <i>Chlamydiales</i> species in abortions of domestic ruminants and in wild ruminants in Hungary, Central Europe. Journal of Veterinary Diagnostic Investigation, 2015, 27, 206-210.	O.5	17
66	Molecular analysis and MIRU-VNTR typing of <i>Mycobacterium avium</i> subsp. <i>paratuberculosis</i> strains from various sources. Journal of Applied Microbiology, 2015, 118, 275-283.	1.4	12
67	Deciphering the protein interaction in adhesion of Francisella tularensis subsp. holarctica to the endothelial cells. Microbial Pathogenesis, 2015, 81, 6-15.	1.3	12
68	First isolation and characterization of Brucella microti from wild boar. BMC Veterinary Research, 2015, 11, 147.	0.7	43
69	Screening of bat faeces for arthropod-borne apicomplexan protozoa: Babesia canis and Besnoitia besnoiti-like sequences from Chiroptera. Parasites and Vectors, 2015, 8, 441.	1.0	40
70	Unique genomic organization of a novel Avipoxvirus detected in turkey (Meleagris gallopavo). Infection, Genetics and Evolution, 2015, 35, 221-229.	1.0	39
71	Rapid, Simple and Cost-Effective Molecular Method to Differentiate the Temperature Sensitive (ts+) MS-H Vaccine Strain and Wild-Type Mycoplasma synoviae Isolates. PLoS ONE, 2015, 10, e0133554. 	1.1	15
72	Tularemia and plague survey in rodents in an earthquake zone in southeastern Iran. Epidemiology and Health, 2015, 37, e2015050.	0.8	22

#	Article	IF	CITATIONS
73	Influence of the Biotope on the Tick Infestation of Cattle and on the Tick-Borne Pathogen Repertoire of Cattle Ticks in Ethiopia. PLoS ONE, 2014, 9, e106452.	1.1	24
74	<i>Francisella tularensis</i> subsp. <i>tularensis</i> Group A.I, United States. Emerging Infectious Diseases, 2014, 20, 861-5.	2.0	18
75	Antibiotic susceptibility profiles of Mycoplasma bovis strains isolated from cattle in Hungary, Central Europe. BMC Veterinary Research, 2014, 10, 256.	0.7	31
76	Detection of Francisella-like endosymbiont in Hyalomma rufipes from Ethiopia. Ticks and Tick-borne Diseases, 2014, 5, 818-820.	1.1	26
77	Genotyping of Coxiella burnetiifrom domestic ruminants and human in Hungary: indication of various genotypes. BMC Veterinary Research, 2014, 10, 107.	0.7	34
78	Phylogeny of Mycoplasma bovisisolates from Hungary based on multi locus sequence typing and multiple-locus variable-number tandem repeat analysis. BMC Veterinary Research, 2014, 10, 108.	0.7	25
79	Genetic relatedness of Brucella suis biovar 2 isolates from hares, wild boars and domestic pigs. Veterinary Microbiology, 2014, 172, 492-498.	0.8	28
80	Identification of Novel Coxiella burnetii Genotypes from Ethiopian Ticks. PLoS ONE, 2014, 9, e113213.	1.1	11
81	Q fever epidemic in Hungary, April to July 2013. Eurosurveillance, 2014, 19, .	3.9	28
82	Identification of tick-borne encephalitis virus in ticks collected in southeastern Hungary. Ticks and Tick-borne Diseases, 2013, 4, 427-431.	1.1	15
83	Within-host evolution of Brucella canis during a canine brucellosis outbreak in a kennel. BMC Veterinary Research, 2013, 9, 76.	0.7	15
84	Non-pet dogs as sentinels and potential synanthropic reservoirs of tick-borne and zoonotic bacteria. Veterinary Microbiology, 2013, 167, 700-703.	0.8	25
85	Prevalence of <i>Francisella tularensis</i> and <i>Francisella</i> -Like Endosymbionts in the Tick Population of Hungary and the Genetic Variability of <i>Francisella</i> -Like Agents. Vector-Borne and Zoonotic Diseases, 2013, 13, 160-163.	0.6	29
86	Synanthropic Birds Associated with High Prevalence of Tick-Borne Rickettsiae and with the First Detection of <i>Rickettsia aeschlimannii</i> in Hungary. Vector-Borne and Zoonotic Diseases, 2013, 13, 77-83.	0.6	46
87	Serologic Evidence of Crimean-Congo Hemorrhagic Fever Virus Infection in Hungary. Vector-Borne and Zoonotic Diseases, 2013, 13, 270-272.	0.6	16
88	Antimicrobial susceptibility of Francisella tularensis subsp. holarctica strains from Hungary, Central Europe. Journal of Antimicrobial Chemotherapy, 2013, 68, 370-373.	1.3	29
89	Natural IS711 insertion causing omp31 gene inactivation in Brucella ovis. Journal of Veterinary Diagnostic Investigation, 2013, 25, 234-238.	0.5	3
90	Worldwide Phylogenetic Relationship of Avian Poxviruses. Journal of Virology, 2013, 87, 4938-4951.	1.5	112

#	Article	IF	CITATIONS
91	First detection of bartonellae in a broad range of bat ectoparasites. Veterinary Microbiology, 2012, 159, 541-543.	0.8	52
92	Prevalence of <i>Coxiella burnetii</i> in Hungary: Screening of Dairy Cows, Sheep, Commercial Milk Samples, and Ticks. Vector-Borne and Zoonotic Diseases, 2012, 12, 650-653.	0.6	39
93	Melt Analysis of Mismatch Amplification Mutation Assays (Melt-MAMA): A Functional Study of a Cost-Effective SNP Genotyping Assay in Bacterial Models. PLoS ONE, 2012, 7, e32866.	1.1	73
94	Phylogeography of <i>Francisella tularensis</i> subsp. <i>holarctica</i> , Europe. Emerging Infectious Diseases, 2012, 18, 290-293.	2.0	82
95	Factors Influencing Emergence of Tularemia, Hungary, 1984–2010. Emerging Infectious Diseases, 2012, 18, 1379-1381.	2.0	32
96	Investigation of the Ecology of <i>Francisella tularensis</i> During an Inter-Epizootic Period. Vector-Borne and Zoonotic Diseases, 2011, 11, 1031-1035.	0.6	66
97	Detection ofBorrelia burgdorferiSensu Lato andAnaplasma phagocytophilumin Small Mammals and Ectoparasites in Hungary. Vector-Borne and Zoonotic Diseases, 2011, 11, 1499-1501.	0.6	26
98	Brucellosis of the European Brown Hare (Lepus europaeus). Journal of Comparative Pathology, 2011, 145, 1-5.	0.1	18
99	Phylogeography of Francisella tularensis subspecies holarctica from the country of Georgia. BMC Microbiology, 2011, 11, 139.	1.3	42
100	Detection of <i>Brucella Canis</i> –Induced Reproductive Diseases in a Kennel. Journal of Veterinary Diagnostic Investigation, 2011, 23, 143-147.	0.5	45
101	Tularemia of European Brown Hare (<i>Lepus europaeus</i>). Veterinary Pathology, 2010, 47, 958-963.	0.8	41
102	Susceptibility of the Common Hamster (Cricetus cricetus) to Francisella tularensis and Its Effect on the Epizootiology of Tularemia in an Area Where Both Are Endemic. Journal of Wildlife Diseases, 2010, 46, 1316-1320.	0.3	15
103	Characterization of Francisella tularensis Strains, Comparing Their Carbon Source Utilization. Zoonoses and Public Health, 2010, 57, 417-422.	0.9	20
104	Generalized Tularemia in a Vervet Monkey (<i>Chlorocebus Aethiops</i>) and a Patas Monkey (<i>Erythrocebus Patas</i>) in a Zoo. Journal of Veterinary Diagnostic Investigation, 2009, 21, 384-387.	0.5	9
105	First isolation of Histophilus somni from goats. Veterinary Microbiology, 2009, 133, 383-386.	0.8	14
106	Aerosol infection of calves with Histophilus somni. Acta Veterinaria Hungarica, 2009, 57, 347-356.	0.2	7