
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5122471/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deepened snow cover mitigates soil carbon loss from intensive landâ€use in a semiâ€arid temperate grassland. Functional Ecology, 2022, 36, 635-645.	1.7	3
2	Analysis of UAV lidar information loss and its influence on the estimation accuracy of structural and functional traits in a meadow steppe. Ecological Indicators, 2022, 135, 108515.	2.6	23
3	The changes in plant and soil <scp>C</scp> pools and their <scp>C</scp> : <scp>N</scp> stoichiometry control grassland <scp>N</scp> retention under elevated <scp>N</scp> inputs. Ecological Applications, 2022, 32, e2517.	1.8	6
4	Global patterns in mycorrhizal mediation of soil carbon storage, stability, and nitrogen demand: A meta-analysis. Soil Biology and Biochemistry, 2022, 166, 108578.	4.2	17
5	Dynamic biotic controls of leaf thermoregulation across the diel timescale. Agricultural and Forest Meteorology, 2022, 315, 108827.	1.9	7
6	Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China Life Sciences, 2022, 65, 861-895.	2.3	163
7	Deepened snow loosens temporal coupling between plant and microbial N utilization and induces ecosystem N losses. Global Change Biology, 2022, 28, 4655-4667.	4.2	7
8	Humanâ€Climate Coupled Changes in Vegetation Community Complexity of China Since 1980s. Earth's Future, 2022, 10, .	2.4	4
9	Partitioning of betaâ€diversity reveals distinct assembly mechanisms of plant and soil microbial communities in response to nitrogen enrichment. Ecology and Evolution, 2022, 12, .	0.8	4
10	Land-use change reduces soil nitrogen retention of both particulate and mineral-associated organic matter in a temperate grassland. Catena, 2022, 216, 106432.	2.2	2
11	Canopy processing of N deposition increases shortâ€term leaf N uptake and photosynthesis, but not longâ€term N retention for aspen seedlings. New Phytologist, 2021, 229, 2601-2610.	3.5	30
12	Deepened snow cover alters biotic and abiotic controls on nitrogen loss during non-growing season in temperate grasslands. Biology and Fertility of Soils, 2021, 57, 165-177.	2.3	10
13	Field evidence reveals conservative water use of poplar saplings under high aerosol conditions. Journal of Ecology, 2021, 109, 2190-2202.	1.9	8
14	Drought and Salinization Stress Induced by Stand Development Alters Mineral Element Cycling in a Larch Plantation. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005906.	1.3	4
15	Intermediate Aerosol Loading Enhances Photosynthetic Activity of Croplands. Geophysical Research Letters, 2021, 48, e2020GL091893.	1.5	19
16	Longâ€ŧerm nitrogen input alters plant and soil bacterial, but not fungal beta diversity in a semiarid grassland. Global Change Biology, 2021, 27, 3939-3950.	4.2	64
17	Spectroscopy outperforms leaf trait relationships for predicting photosynthetic capacity across different forest types. New Phytologist, 2021, 232, 134-147.	3.5	19
18	The coordination between leaf and fine root litter decomposition and the difference in their controlling factors. Global Ecology and Biogeography, 2021, 30, 2286-2296.	2.7	54

#	Article	IF	CITATIONS
19	Intraspecific trait variation drives grassland species richness and productivity under changing precipitation. Ecosphere, 2021, 12, e03707.	1.0	3
20	The significance of tree-tree interactions for forest ecosystem functioning. Basic and Applied Ecology, 2021, 55, 33-52.	1.2	38
21	Exploring Seasonal and Circadian Rhythms in Structural Traits of Field Maize from LiDAR Time Series. Plant Phenomics, 2021, 2021, 9895241.	2.5	10
22	Moving toward a new era of ecosystem science. Geography and Sustainability, 2021, 2, 151-162.	1.9	15
23	Soil fertility underlies the positive relationship between island area and litter decomposition in a fragmented subtropical forest landscape. Catena, 2021, 204, 105414.	2.2	2
24	Plant carbon inputs through shoot, root, and mycorrhizal pathways affect soil organic carbon turnover differently. Soil Biology and Biochemistry, 2021, 160, 108322.	4.2	51
25	Divergent contributions of living roots to turnover of different soil organic carbon pools and their links to plant traits. Functional Ecology, 2021, 35, 2821-2830.	1.7	9
26	Nonlinear responses of the V and K of hydrolytic and polyphenol oxidative enzymes to nitrogen enrichment. Soil Biology and Biochemistry, 2020, 141, 107656.	4.2	14
27	Patterns and determinants of soil microbial residues from tropical to boreal forests. Soil Biology and Biochemistry, 2020, 151, 108059.	4.2	61
28	Critical transition of soil bacterial diversity and composition triggered by nitrogen enrichment. Ecology, 2020, 101, e03053.	1.5	98
29	Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland. Clobal Change Biology, 2020, 26, 3015-3027.	4.2	40
30	Large‣cale Geographical Variations and Climatic Controls on Crown Architecture Traits. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005306.	1.3	13
31	Longâ€ŧerm deepened snow cover alters litter layer turnover rate in temperate steppes. Functional Ecology, 2020, 34, 1113-1122.	1.7	8
32	Interactive effects of air pollutants and atmospheric moisture stress on aspen growth and photosynthesis along an urban-rural gradient. Environmental Pollution, 2020, 260, 114076.	3.7	12
33	Allocation and turnover of rhizodeposited carbon in different soil microbial groups. Soil Biology and Biochemistry, 2020, 150, 107973.	4.2	21
34	Elevated CO ₂ decreases soil carbon stability in Tibetan Plateau. Environmental Research Letters, 2020, 15, 114002.	2.2	7
35	A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nature Ecology and Evolution, 2019, 3, 1309-1320.	3.4	304
36	Upward trend of nitrogen deposition curbed by the dual force of environmental regulation and social-economic structural change in China. Science Bulletin, 2019, 64, 1300-1302.	4.3	3

#	Article	IF	CITATIONS
37	Soil organic carbon and nutrient losses resulted from spring dust emissions in Northern China. Atmospheric Environment, 2019, 213, 585-596.	1.9	28
38	Differential mechanisms drive changes in soil C pools under N and P enrichment in a subalpine spruce plantation. Geoderma, 2019, 340, 213-223.	2.3	9
39	Plant phenology and global climate change: Current progresses and challenges. Global Change Biology, 2019, 25, 1922-1940.	4.2	944
40	The decline in plant biodiversity slows down soil carbon turnover under increasing nitrogen deposition in a temperate steppe. Functional Ecology, 2019, 33, 1362-1372.	1.7	16
41	Evaluating maize phenotype dynamics under drought stress using terrestrial lidar. Plant Methods, 2019, 15, 11.	1.9	84
42	Initial Soil Organic Matter Content Influences the Storage and Turnover of Litter, Root and Soil Carbon in Grasslands. Ecosystems, 2018, 21, 1377-1389.	1.6	21
43	Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4051-4056.	3.3	431
44	Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4015-4020.	3.3	419
45	Synthetic nitrogen fertilizers alter the soil chemistry, production and quality of tea. A meta-analysis. Agronomy for Sustainable Development, 2018, 38, 1.	2.2	40
46	Afforestation neutralizes soil pH. Nature Communications, 2018, 9, 520.	5.8	140
47	The carbon sequestration potential of China's grasslands. Ecosphere, 2018, 9, e02452.	1.0	22
48	Ecosystem scale trade-off in nitrogen acquisition pathways. Nature Ecology and Evolution, 2018, 2, 1724-1734.	3.4	66
49	Atmospheric CO ₂ Enrichment and Reactive Nitrogen Inputs Interactively Stimulate Soil Cation Losses and Acidification. Environmental Science & Technology, 2018, 52, 6895-6902.	4.6	15
50	Wind erosion enhanced by land use changes significantly reduces ecosystem carbon storage and carbon sequestration potentials in semiarid grasslands. Land Degradation and Development, 2018, 29, 3469-3478.	1.8	34
51	Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition. Geoderma, 2018, 332, 37-44.	2.3	99
52	Field evidences for the positive effects of aerosols on tree growth. Global Change Biology, 2018, 24, 4983-4992.	4.2	64
53	The effects of increased snow depth on plant and microbial biomass and community composition along a precipitation gradient in temperate steppes. Soil Biology and Biochemistry, 2018, 124, 134-141.	4.2	27
54	High nightâ€time humidity and dissolved organic carbon content support rapid decomposition of standing litter in a semiâ€arid landscape. Functional Ecology, 2017, 31, 1659-1668.	1.7	51

#	Article	IF	CITATIONS
55	Temporal dynamics of ultraviolet radiation impacts on litter decomposition in a semi-arid ecosystem. Plant and Soil, 2017, 419, 71-81.	1.8	27
56	Global patterns and substrateâ€based mechanisms of theÂterrestrial nitrogen cycle. Ecology Letters, 2016, 19, 697-709.	3.0	192
57	Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate <i>Larix principisâ€rupprechtii</i> plantations. New Phytologist, 2016, 212, 1019-1029.	3.5	106
58	Key ecological responses to nitrogen are altered by climate change. Nature Climate Change, 2016, 6, 836-843.	8.1	261
59	A crossâ€biome synthesis of soil respiration and its determinants under simulated precipitation changes. Global Change Biology, 2016, 22, 1394-1405.	4.2	211
60	Precipitation regime drives warming responses of microbial biomass and activity in temperate steppe soils. Biology and Fertility of Soils, 2016, 52, 469-477.	2.3	28
61	Age-Related Modulation of the Nitrogen Resorption Efficiency Response to Growth Requirements and Soil Nitrogen Availability in a Temperate Pine Plantation. Ecosystems, 2016, 19, 698-709.	1.6	71
62	Asynchronous responses of soil carbon dioxide, nitrous oxide emissions and net nitrogen mineralization to enhanced fine root input. Soil Biology and Biochemistry, 2016, 92, 67-78.	4.2	21
63	Response to Smith's comment. Journal of Plant Ecology, 2015, 8, 335-335.	1.2	1
64	How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Global Change Biology, 2015, 21, 1249-1257.	4.2	268
65	The interaction between abiotic photodegradation and microbial decomposition under ultraviolet radiation. Clobal Change Biology, 2015, 21, 2095-2104.	4.2	89
66	Effects and Empirical Critical Loads of Nitrogen for Ecoregions of the United States. Environmental Pollution, 2015, , 129-169.	0.4	3
67	Different responses of soil respiration and its components to nitrogen addition among biomes: a metaâ€analysis. Global Change Biology, 2014, 20, 2332-2343.	4.2	266
68	Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Global Change Biology, 2014, 20, 3229-3237.	4.2	239
69	Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 2014, 5, 5018.	5.8	414
70	The effect of nitrogen addition on soil respiration from a nitrogen-limited forest soil. Agricultural and Forest Meteorology, 2014, 197, 103-110.	1.9	85
71	Decoupling of soil microbes and plants with increasing anthropogenic nitrogen inputs in a temperate steppe. Soil Biology and Biochemistry, 2014, 72, 116-122.	4.2	71
72	Crystal structure of <i>Arabidopsis</i> glutamyl-tRNA reductase in complex with its stimulator protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6630-6635.	3.3	58

#	Article	IF	CITATIONS
73	Tree and Forest Responses to Interacting Elevated Atmospheric CO2 and Tropospheric O3. Developments in Environmental Science, 2013, , 179-208.	0.5	17
74	Four New Indole Alkaloids from <i>Neolamarckia cadamba</i> . Chinese Journal of Chemistry, 2013, 31, 79-83.	2.6	10
75	Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. Journal of Plant Ecology, 2013, 6, 437-447.	1.2	116
76	Variability of above-ground litter inputs alters soil physicochemical and biological processes: a meta-analysis of litterfall-manipulation experiments. Biogeosciences, 2013, 10, 7423-7433.	1.3	155
77	Climate change impacts of US reactive nitrogen. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7671-7675.	3.3	126
78	Ecological effects of nitrogen and sulfur air pollution in the US: what do we know?. Frontiers in Ecology and the Environment, 2012, 10, 365-372.	1.9	157
79	Increased phosphorus availability mitigates the inhibition of nitrogen deposition on CH ₄ uptake in an old-growth tropical forest, southern China. Biogeosciences, 2011, 8, 2805-2813.	1.3	60
80	Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. , 2011, 21, 3049-3082.		373
81	A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 2010, 13, 819-828.	3.0	600
82	The Influence of Chemistry, Production and Community Composition on Leaf Litter Decomposition Under Elevated Atmospheric CO2 and Tropospheric O3 in a Northern Hardwood Ecosystem. Ecosystems, 2009, 12, 401-416.	1.6	35
83	Enhanced litter input rather than changes in litter chemistry drive soil carbon and nitrogen cycles under elevated CO ₂ : a microcosm study. Global Change Biology, 2009, 15, 441-453.	4.2	80
84	A review of nitrogen enrichment effects on three biogenic GHGs: the CO ₂ sink may be largely offset by stimulated N ₂ O and CH ₄ emission. Ecology Letters, 2009, 12, 1103-1117.	3.0	532
85	Effects of elevated atmospheric CO2 and tropospheric O3 on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper birch communities. Plant and Soil, 2007, 299, 65-82.	1.8	27
86	Effects of elevated concentrations of atmospheric CO2 and tropospheric O3 on leaf litter production and chemistry in trembling aspen and paper birch communities. Tree Physiology, 2005, 25, 1511-1522.	1.4	101
87	Spatial–temporal distribution of dimethylsulfide in the subtropical Pearl River Estuary and adjacent waters. Continental Shelf Research, 2005, 25, 1996-2007.	0.9	12
88	Seawater, atmospheric dimethylsulfide and aerosol ions in the Pearl River Estuary and the adjacent northern South China Sea. Journal of Sea Research, 2005, 53, 131-145.	0.6	20