Ling Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5122465/publications.pdf

Version: 2024-02-01

840776 940533 20 252 11 16 citations h-index g-index papers 23 23 23 121 docs citations all docs times ranked citing authors

#	Article	IF	Citations
1	Calibration set selection method based on the "M + N―theory: application to non-invasive measurement by dynamic spectrum. RSC Advances, 2016, 6, 113322-113326.	3.6	33
2	A review on Mâ \in %+â \in %N theory and its strategies to improve the accuracy of spectrochemical composition analysis of complex liquids. Applied Spectroscopy Reviews, 2020, 55, 87-104.	6.7	32
3	Quantitative determination based on the differences between spectra-temperature relationships. Talanta, 2016, 155, 47-52.	5.5	22
4	A review on the strategies for reducing the non-linearity caused by scattering on spectrochemical quantitative analysis of complex solutions. Applied Spectroscopy Reviews, 2020, 55, 351-377.	6.7	22
5	Composition Analysis of Scattering Liquids Based on Spatially Offset Visible-Near-Infrared Spectroscopy. Applied Spectroscopy, 2012, 66, 1347-1352.	2.2	21
6	Detection of free hemoglobin in blood products using transmission spectra and fluorescence spectra for quality assurance. Analytical Methods, 2016, 8, 4239-4244.	2.7	17
7	Noninvasive hemoglobin measurement based on optimizing Dynamic Spectrum method. Spectroscopy Letters, 2017, 50, 164-170.	1.0	16
8	Nondestructive Measurement of Hemoglobin in Blood Bags Based on Multi-Pathlength VIS-NIR Spectroscopy. Scientific Reports, 2018, 8, 2204.	3.3	16
9	Fast digital lock-in amplifier for dynamic spectrum extraction. Journal of Biomedical Optics, 2013, 18, 057003.	2.6	15
10	Dynamic spectrum extraction method based on independent component analysis combined dual-tree complex wavelet transform. RSC Advances, 2017, 7, 11198-11205.	3.6	12
11	Non-linearity correction in NIR absorption spectra by grouping modeling according to the content of analyte. Scientific Reports, 2018, 8, 8564.	3.3	12
12	The relationship between the perfusion index and precision of noninvasive blood component measurement based on dynamic spectroscopy. Analytical Methods, 2017, 9, 2578-2584.	2.7	11
13	Improving the analysis accuracy of components in blood by SSP-MCSD and multi-mode spectral data fusion. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 228, 117778.	3.9	8
14	Suppression of inter-device variation for component analysis of turbid liquids based on spatially resolved diffuse reflectance spectroscopy. Review of Scientific Instruments, 2017, 88, 033104.	1.3	6
15	Accuracy improvement of quantitative analysis in VIS-NIR spectroscopy using the GKF-WTEF algorithm. Applied Optics, 2019, 58, 7836.	1.8	2
16	Improving the nondestructive analysis accuracy of liquids in a flexible container based on the multi-pathlength spectrum method. Review of Scientific Instruments, 2019, 90, 056101.	1.3	1
17	Determine the significant digit of spectral data and reduce its redundant digits to eliminate the chance correlation problem based on the "salami slicing―method. Chemometrics and Intelligent Laboratory Systems, 2019, 187, 1-5.	3.5	1
18	Non-destructive and rapid detection of blood quality in blood bags based on modified ACO wavelength selection algorithm. , 2020, , .		1

LING LIN

#	Article	IF	CITATIONS
19	Towards robust reduction of nonlinear errors in dynamic spectrum spectroscopy for effective noninvasive optical detection of blood components. Infrared Physics and Technology, 2022, 121, 104049.	2.9	1
20	Higher precision integer operations instead of floating-point operations in computers or microprocessors. Review of Scientific Instruments, 2021, 92, 025104.	1.3	0