List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/512191/publications.pdf Version: 2024-02-01

Δριτνά Ομεμανί

#	Article	IF	CITATIONS
1	Five years after the 14 November 2016 KaikÅura Tsunami in Aotearoa-New Zealand: insights from recent research. New Zealand Journal of Geology, and Geophysics, 2023, 66, 147-161.	1.8	3
2	Sensitivity of Tsunami Data to the Up-Dip Extent of the July 2021 MwÂ8.2 Alaska Earthquake. Seismological Research Letters, 2022, 93, 1992-2003.	1.9	8
3	A 1000-yr-old tsunami in the Indian Ocean points to greater risk for East Africa: REPLY. Geology, 2021, 49, e516-e516.	4.4	0
4	Source modeling and spectral analysis of the Crete tsunami of 2nd May 2020 along the Hellenic Subduction Zone, offshore Greece. Earth, Planets and Space, 2021, 73, .	2.5	17
5	Tsunami Induced by the Strikeâ€5lip Fault of the 2018 Palu Earthquake (<i>M_w</i> = 7.5), Sulawesi Island, Indonesia. Earth and Space Science, 2021, 8, e2020EA001400.	2.6	5
6	Tsunami Source of the 2021 <i>M</i> _W 8.1 Raoul Island Earthquake From DART and Tideâ€Gauge Data Inversion. Geophysical Research Letters, 2021, 48, e2021GL094449.	4.0	14
7	Regional probabilistic tsunami hazard assessment associated with active faults along the eastern margin of the Sea of Japan. Earth, Planets and Space, 2020, 72, .	2.5	28
8	Reduction effect of tsunami sediment transport by a coastal forest: Numerical simulation of the 2011 Tohoku tsunami on the Sendai Plain, Japan. Sedimentary Geology, 2020, 407, 105740.	2.1	5
9	Source Process for Two Enigmatic Repeating Verticalâ€T CLVD Tsunami Earthquakes in the Kermadec Ridge. Geophysical Research Letters, 2020, 47, e2020GL087805.	4.0	4
10	Applying a Deep Learning Algorithm to Tsunami Inundation Database of Megathrust Earthquakes. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019690.	3.4	12
11	A 1000-yr-old tsunami in the Indian Ocean points to greater risk for East Africa. Geology, 2020, 48, 808-813.	4.4	20
12	Determination of Source Models Appropriate for Tsunami Forecasting: Application to Tsunami Earthquakes in Central Sumatra, Indonesia. Pure and Applied Geophysics, 2020, 177, 2551-2562.	1.9	8
13	Advanced tsunami detection and forecasting by radar on unconventional airborne observing platforms. Scientific Reports, 2020, 10, 2412.	3.3	12
14	Application of Dense Offshore Tsunami Observations from Ocean Bottom Pressure Gauges (OBPGs) for Tsunami Research and Early Warnings. Springer Natural Hazards, 2019, , 7-22.	0.3	3
15	Generation mechanism of large later phases of the 2011 Tohoku-oki tsunami causing damages in Hakodate, Hokkaido, Japan. Progress in Earth and Planetary Science, 2019, 6, .	3.0	9
16	Source Model for the Tsunami Inside Palu Bay Following the 2018 Palu Earthquake, Indonesia. Geophysical Research Letters, 2019, 46, 8721-8730.	4.0	55
17	An Optimized Array Configuration of Tsunami Observation Network Off Southern Java, Indonesia. Journal of Geophysical Research: Solid Earth, 2019, 124, 9622-9637.	3.4	18
18	Tsunami history over the past 2000 years on the Sanriku coast, Japan, determined using gravel deposits to estimate tsunami inundation behavior. Sedimentary Geology, 2019, 382, 85-102.	2.1	17

#	Article	IF	CITATIONS
19	Tsunami Hazard and Built Environment Damage Observations from Palu City after the September 28 2018 Sulawesi Earthquake and Tsunami. Pure and Applied Geophysics, 2019, 176, 3305-3321.	1.9	52
20	Fault source of the 2 September 2009 Mw 6.8 Tasikmalaya intraslab earthquake, Indonesia: Analysis from GPS data inversion, tsunami height simulation, and stress transfer. Physics of the Earth and Planetary Interiors, 2019, 291, 54-61.	1.9	23
21	Tsunami Data Assimilation Without a Dense Observation Network. Geophysical Research Letters, 2019, 46, 2045-2053.	4.0	19
22	Improving Forecast Accuracy With Tsunami Data Assimilation: The 2009 Dusky Sound, New Zealand, Tsunami. Journal of Geophysical Research: Solid Earth, 2019, 124, 566-577.	3.4	15
23	An Adjoint Sensitivity Method Applied to Time Reverse Imaging of Tsunami Source for the 2009 Samoa Earthquake. Geophysical Research Letters, 2018, 45, 627-636.	4.0	22
24	Optimum Sea Surface Displacement and Fault Slip Distribution of the 2017 Tehuantepec Earthquake (M) Tj ETQ	9q0_0_0 rgE 4.0	3T /gverlock :
25	Data assimilation with dispersive tsunami model: a test for the Nankai Trough. Earth, Planets and Space, 2018, 70, .	2.5	16
26	Adaptive Tsunami Source Inversion Using Optimizations and the Reciprocity Principle. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,749.	3.4	9
27	Alternative to non-linear model for simulating tsunami inundation in real-time. Geophysical Journal International, 2018, 214, 2002-2013.	2.4	19
28	Contribution from Multiple Fault Ruptures to Tsunami Generation During the 2016 Kaikoura Earthquake. Pure and Applied Geophysics, 2018, 175, 2557-2574.	1.9	18
29	Sediment transport modeling of multiple grain sizes for the 2011 Tohoku tsunami on a steep coastal valley of Numanohama, northeast Japan. Marine Geology, 2018, 405, 77-91.	2.1	14
30	Near-field tsunami inundation forecast method assimilating ocean bottom pressure data: A synthetic test for the 2011 Tohoku-oki tsunami. Physics of the Earth and Planetary Interiors, 2018, 283, 82-91.	1.9	13
31	Rupture process of the 2016 Wharton Basin strikeâ€slip faulting earthquake estimated from joint inversion of teleseismic and tsunami waveforms. Geophysical Research Letters, 2017, 44, 4082-4089.	4.0	20
32	Effects of topography on particle composition of 2011 tsunami deposits on the ria-type Sanriku coast, Japan. Quaternary International, 2017, 456, 17-27.	1.5	12
33	Green's Functionâ€Based Tsunami Data Assimilation: A Fast Data Assimilation Approach Toward Tsunami Early Warning. Geophysical Research Letters, 2017, 44, 10,282.	4.0	37
34	Pre-computed tsunami inundation database and forecast simulation in Pelabuhan Ratu, Indonesia. Pure and Applied Geophysics, 2017, 174, 3219-3235.	1.9	19
35	Method to Determine Appropriate Source Models of Large Earthquakes Including Tsunami Earthquakes for Tsunami Early Warning in Central America. Pure and Applied Geophysics, 2017, 174, 3237-3248.	1.9	11
36	Optimal Design for Placements of Tsunami Observing Systems to Accurately Characterize the Inducing Earthquake. Geophysical Research Letters, 2017, 44, 12,106.	4.0	24

#	Article	IF	CITATIONS
37	Preparing for the Future Nankai Trough Tsunami: A Data Assimilation and Inversion Analysis From Various Observational Systems. Journal of Geophysical Research: Oceans, 2017, 122, 7924-7937.	2.6	26
38	Fault Slip Distribution of the 2016 Fukushima Earthquake Estimated from Tsunami Waveforms. Pure and Applied Geophysics, 2017, 174, 2925-2943.	1.9	33
39	Re-evaluation of Earthquake and Tsunami Magnitudes of the 1906 Great Ecuador-Colombia Earthquake. Zisin (Journal of the Seismological Society of Japan 2nd Ser), 2017, 69, 87-98.	0.2	3
40	A possible space-based tsunami early warning system using observations of the tsunami ionospheric hole. Scientific Reports, 2016, 6, 37989.	3.3	33
41	Comparative study of two tsunamigenic earthquakes in the Solomon Islands: 2015 <i>M_w</i> 7.0 normalâ€fault and 2013 Santa Cruz <i>M_w</i> 8.0 megathrust earthquakes. Geophysical Research Letters, 2016, 43, 4340-4349.	t 4.0	33
42	Estimate of tsunami source using optimized unit sources and including dispersion effects during tsunami propagation: The 2012 Haida Gwaii earthquake. Geophysical Research Letters, 2016, 43, 9819-9828.	4.0	19
43	Source model of the 16 September 2015 Illapel, Chile, <i>M_w</i> 8.4 earthquake based on teleseismic and tsunami data. Geophysical Research Letters, 2016, 43, 643-650.	4.0	111
44	Tsunami data assimilation of Cascadia seafloor pressure gauge records from the 2012 Haida Gwaii earthquake. Geophysical Research Letters, 2016, 43, 4189-4196.	4.0	61
45	Tsunamis from the 29 March and 5 May 2015 Papua New Guinea earthquake doublet (<i>M_w</i> 7.5) and tsunamigenic potential of the New Britain trench. Geophysical Research Letters, 2015, 42, 5958-5965.	4.0	7
46	Array Observations of the 2012 Haida Gwaii Tsunami Using Cascadia Initiative Absolute and Differential Seafloor Pressure Gauges. Seismological Research Letters, 2015, 86, 1278-1286.	1.9	19
47	Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from oceanâ€wide tsunami waveforms and GPS data. Geophysical Research Letters, 2015, 42, 1053-1060.	4.0	121
48	Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 M w 8.2 Iquique, Chile Earthquake. Pure and Applied Geophysics, 2015, 172, 719-730.	1.9	34
49	Effectiveness of Real-Time Near-Field Tsunami Inundation Forecasts for Tsunami Evacuation in Kushiro City, Hokkaido, Japan. Advances in Natural and Technological Hazards Research, 2015, , 157-177.	1.1	7
50	W Phase Inversion and Tsunami Inundation Modeling for Tsunami Early Warning: Case Study for the 2011 Tohoku Event. Pure and Applied Geophysics, 2014, 171, 1409-1422.	1.9	29
51	A methodology for nearâ€field tsunami inundation forecasting: Application to the 2011 Tohoku tsunami. Journal of Geophysical Research: Solid Earth, 2014, 119, 8186-8206.	3.4	63
52	Real-Time Tsunami Inundation Forecast for a Recurrence of 17thCentury Great Hokkaido Earthquake in Japan. Journal of Disaster Research, 2014, 9, 358-364.	0.7	10
53	Tsunami Source of the 2010 Mentawai, Indonesia Earthquake Inferred from Tsunami Field Survey and Waveform Modeling. Pure and Applied Geophysics, 2013, 170, 1567-1582.	1.9	90
54	Comparison of Earthquake Source Models for the 2011 Tohoku Event Using Tsunami Simulations and Near-Field Observations. Bulletin of the Seismological Society of America, 2013, 103, 1256-1274.	2.3	64

#	Article	IF	CITATIONS
55	Effect of the largest foreshock (Mw 7.3) on triggering the 2011 Tohoku earthquake (Mw 9.0). Geophysical Research Letters, 2013, 40, 497-500.	4.0	9
56	Numerical experiment and a case study of sediment transport simulation of the 2004 Indian Ocean tsunami in Lhok Nga, Banda Aceh, Indonesia. Earth, Planets and Space, 2012, 64, 817-827.	2.5	31
57	Source model of the great 2011 Tohoku earthquake estimated from tsunami waveforms and crustal deformation data. Earth and Planetary Science Letters, 2012, 341-344, 234-242.	4.4	93
58	Reexamination of Occurrence of Large Tsunamis after the Analysis of the 2011 Great Tohoku-oki Earthquake. Zisin (Journal of the Seismological Society of Japan 2nd Ser), 2012, 64, 265-270.	0.2	2
59	Tsunamigenic ionospheric hole. Geophysical Research Letters, 2012, 39, .	4.0	78
60	Tsunami Hazard Mitigation at Palabuhanratu, Indonesia. Journal of Disaster Research, 2012, 7, 19-25.	0.7	13
61	Sedimentary Deposits from the 17 July 2006 Western Java Tsunami, Indonesia: Use of Grain Size Analyses to Assess Tsunami Flow Depth, Speed, and Traction Carpet Characteristics. Pure and Applied Geophysics, 2011, 168, 1951-1961.	1.9	67
62	Slip distribution of the 2007 Bengkulu earthquake inferred from tsunami waveforms and InSAR data. Journal of Geophysical Research, 2010, 115, .	3.3	52
63	Analysis of the Tsunami Generated by the Great 1977 Sumba Earthquake that Occurred in Indonesia. Bulletin of the Seismological Society of America, 2009, 99, 2169-2179.	2.3	35
64	In situ Measurements of Tide Gauge Response and Corrections of Tsunami Waveforms from the Niigataken Chuetsu-oki Earthquake in 2007. Pure and Applied Geophysics, 2009, 166, 97-116.	1.9	9
65	In situ Measurements of Tide Gauge Response and Corrections of Tsunami Waveforms from the Niigataken Chuetsu-oki Earthquake in 2007. , 2009, , 97-116.		0
66	Extreme runup from the 17 July 2006 Java tsunami. Geophysical Research Letters, 2007, 34, .	4.0	120