Shaobin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5121708/publications.pdf Version: 2024-02-01

SHAORIN 7HII

#	Article	IF	CITATIONS
1	Quality and efficiency assessment of six extracellular vesicle isolation methods by nanoâ€flow cytometry. Journal of Extracellular Vesicles, 2020, 9, 1697028.	12.2	353
2	Protein Profiling and Sizing of Extracellular Vesicles from Colorectal Cancer Patients <i>via</i> Flow Cytometry. ACS Nano, 2018, 12, 671-680.	14.6	333
3	Light-Scattering Detection below the Level of Single Fluorescent Molecules for High-Resolution Characterization of Functional Nanoparticles. ACS Nano, 2014, 8, 10998-11006.	14.6	159
4	Electrochemical Intramolecular Aminooxygenation of Unactivated Alkenes. Chemistry - A European Journal, 2014, 20, 12740-12744.	3.3	96
5	Development of an Ultrasensitive Dual-Channel Flow Cytometer for the Individual Analysis of Nanosized Particles and Biomolecules. Analytical Chemistry, 2009, 81, 2555-2563.	6.5	70
6	Size Differentiation and Absolute Quantification of Gold Nanoparticles via Single Particle Detection with a Laboratory-Built High-Sensitivity Flow Cytometer. Journal of the American Chemical Society, 2010, 132, 12176-12178.	13.7	65
7	Labelâ€Free Analysis of Single Viruses with a Resolution Comparable to That of Electron Microscopy and the Throughput of Flow Cytometry. Angewandte Chemie - International Edition, 2016, 55, 10239-10243.	13.8	58
8	Detection and Quantification of Bacterial Autofluorescence at the Single-Cell Level by a Laboratory-Built High-Sensitivity Flow Cytometer. Analytical Chemistry, 2012, 84, 1526-1532.	6.5	54
9	Analytical techniques for single-liposome characterization. Analytical Methods, 2013, 5, 2150.	2.7	47
10	Multiparameter Quantification of Liposomal Nanomedicines at the Single-Particle Level by High-Sensitivity Flow Cytometry. ACS Applied Materials & Interfaces, 2017, 9, 13913-13919.	8.0	44
11	Rapid, Absolute, and Simultaneous Quantification of Specific Pathogenic Strain and Total Bacterial Cells Using an Ultrasensitive Dual-Color Flow Cytometer. Analytical Chemistry, 2010, 82, 1109-1116.	6.5	43
12	High-Throughput Multiparameter Analysis of Individual Mitochondria. Analytical Chemistry, 2012, 84, 6421-6428.	6.5	43
13	Sensitive and Selective Bacterial Detection Using Tetracysteineâ€Tagged Phages in Conjunction with Biarsenical Dye. Angewandte Chemie - International Edition, 2011, 50, 5873-5877.	13.8	40
14	Electrochemical C–H phosphorylation of arenes in continuous flow suitable for late-stage functionalization. Nature Communications, 2021, 12, 6629.	12.8	38
15	Synthesis of Acridinium Photocatalysts via Site-Selective C–H Alkylation. CCS Chemistry, 2021, 3, 317-325.	7.8	37
16	Single Particle Orientation and Rotational Tracking (SPORT) in biophysical studies. Nanoscale, 2013, 5, 10753.	5.6	30
17	Identification of Mitochondria-Targeting Anticancer Compounds by an <i>in Vitro</i> Strategy. Analytical Chemistry, 2014, 86, 5232-5237.	6.5	28
18	Stochastic Optical Reconstruction Microscopy Imaging of Microtubule Arrays in Intact Arabidopsis thaliana Seedling Roots. Scientific Reports, 2015, 5, 15694.	3.3	26

Shaobin Zhu

#	ARTICLE	IF	CITATIONS
19	Trace Detection of Specific Viable Bacteria Using Tetracysteine-Tagged Bacteriophages. Analytical Chemistry, 2014, 86, 907-912.	6.5	25
20	Electrochemical aromatic Câ \in "H hydroxylation in continuous flow. Nature Communications, 2022, 13, .	12.8	23
21	Quantitative Assessment of the Physical Virus Titer and Purity by Ultrasensitive Flow Virometry. Angewandte Chemie - International Edition, 2021, 60, 9351-9356.	13.8	21
22	Quantification of Available Ligand Density on the Surface of Targeted Liposomal Nanomedicines at the Single-Particle Level. ACS Nano, 2022, 16, 6886-6897.	14.6	20
23	Light-Scattering Sizing of Single Submicron Particles by High-Sensitivity Flow Cytometry. Analytical Chemistry, 2018, 90, 12768-12775.	6.5	19
24	Integrating Continuous-Flow Electrochemistry and Photochemistry for the Synthesis of Acridinium Photocatalysts Via Site-Selective C–H Alkylation. Organic Process Research and Development, 2021, 25, 2608-2613.	2.7	17
25	Progress in the development of techniques based on light scattering for single nanoparticle detection. Science China Chemistry, 2011, 54, 1244-1253.	8.2	12
26	Quantification of protein copy number in single mitochondria: The Bcl-2 family proteins. Biosensors and Bioelectronics, 2015, 74, 476-482.	10.1	12
27	High-throughput single-cell analysis of low copy number β-galactosidase by a laboratory-built high-sensitivity flow cytometer. Biosensors and Bioelectronics, 2013, 48, 49-55.	10.1	11
28	Labelâ€Free Analysis of Single Viruses with a Resolution Comparable to That of Electron Microscopy and the Throughput of Flow Cytometry. Angewandte Chemie, 2016, 128, 10395-10399.	2.0	9
29	High angular-resolution automated visible-wavelength scanning angle Raman microscopy. Analytica Chimica Acta, 2014, 848, 61-66.	5.4	5
30	Quantitative Assessment of the Physical Virus Titer and Purity by Ultrasensitive Flow Virometry. Angewandte Chemie, 2021, 133, 9437-9442.	2.0	3
31	Super-Resolution Imaging in Plant Cells. Biophysical Journal, 2014, 106, 200a.	0.5	0