Zhi Ping Xu

List of Publications by Citations

Source: https://exaly.com/author-pdf/512146/zhi-ping-xu-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 287
 13,469
 61
 103

 papers
 citations
 h-index
 g-index

 297
 15,674
 8
 6.86

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
287	Inorganic nanoparticles as carriers for efficient cellular delivery. <i>Chemical Engineering Science</i> , 2006 , 61, 1027-1040	4.4	725
286	Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. <i>Nature Plants</i> , 2017 , 3, 16207	11.5	406
285	Stable suspension of layered double hydroxide nanoparticles in aqueous solution. <i>Journal of the American Chemical Society</i> , 2006 , 128, 36-7	16.4	333
284	Catalytic applications of layered double hydroxides and derivatives. <i>Applied Clay Science</i> , 2011 , 53, 139-	15.0	291
283	Hydrothermal Synthesis of Layered Double Hydroxides (LDHs) from Mixed MgO and Al2O3: LDH Formation Mechanism. <i>Chemistry of Materials</i> , 2005 , 17, 1055-1062	9.6	290
282	Abrupt Structural Transformation in Hydrotalcite-like Compounds Mg1-xAlx(OH)2(NO3)x[hH2O as a Continuous Function of Nitrate Anions. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 1743-1749	3.4	265
281	Hierarchical layered double hydroxide nanocomposites: structure, synthesis and applications. <i>Chemical Communications</i> , 2015 , 51, 3024-36	5.8	243
280	Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 16923-9	3.4	243
279	Layered Double Hydroxides for CO2 Capture: Structure Evolution and Regeneration. <i>Industrial & Engineering Chemistry Research</i> , 2006 , 45, 7504-7509	3.9	233
278	In Vitro Sustained Release of LMWH from MgAl-layered Double Hydroxide Nanohybrids. <i>Chemistry of Materials</i> , 2008 , 20, 3715-3722	9.6	219
277	Layered double hydroxide nanoparticles in gene and drug delivery. <i>Expert Opinion on Drug Delivery</i> , 2009 , 6, 907-22	8	218
276	Co-delivery of siRNAs and anti-cancer drugs using layered double hydroxide nanoparticles. <i>Biomaterials</i> , 2014 , 35, 3331-9	15.6	215
275	Subcellular compartment targeting of layered double hydroxide nanoparticles. <i>Journal of Controlled Release</i> , 2008 , 130, 86-94	11.7	209
274	Interconversion of Brucite-like and Hydrotalcite-like Phases in Cobalt Hydroxide Compounds. <i>Chemistry of Materials</i> , 1999 , 11, 67-74	9.6	194
273	PD-L1 Distribution and Perspective for Cancer Immunotherapy-Blockade, Knockdown, or Inhibition. <i>Frontiers in Immunology</i> , 2019 , 10, 2022	8.4	155
272	Efficient siRNA delivery to mammalian cells using layered double hydroxide nanoparticles. <i>Biomaterials</i> , 2010 , 31, 1821-9	15.6	151
271	Theoretical and experimental analysis of droplet evaporation on solid surfaces. <i>Chemical Engineering Science</i> , 2012 , 69, 522-529	4.4	141

(2010-1998)

270	Thermal evolution of cobalt hydroxides: a comparative study of their various structural phases. Journal of Materials Chemistry, 1998 , 8, 2499-2506		138
269	Manganese-Based Layered Double Hydroxide Nanoparticles as a T -MRI Contrast Agent with Ultrasensitive pH Response and High Relaxivity. <i>Advanced Materials</i> , 2017 , 29, 1700373	24	135
268	MgCoAlIIDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel. <i>Applied Catalysis B: Environmental</i> , 2009 , 88, 42-49	21.8	131
267	Recent progress in upconversion luminescence nanomaterials for biomedical applications. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 192-209	7-3	130
266	High affinity of dodecylbenzene sulfonate for layered double hydroxide and resulting morphological changes. <i>Journal of Materials Chemistry</i> , 2003 , 13, 268-273		128
265	Influence of Water on High-Temperature CO2 Capture Using Layered Double Hydroxide Derivatives. <i>Industrial & Derivatives</i> .	3.9	125
264	Efficient delivery of siRNA to cortical neurons using layered double hydroxide nanoparticles. <i>Biomaterials</i> , 2010 , 31, 8770-9	15.6	124
263	Adsorption/desorption studies of NOx on well-mixed oxides derived from Co-Mg/Al Hydrotalcite-like compounds. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 4291-300	3.4	119
262	Removal efficiency of arsenate and phosphate from aqueous solution using layered double hydroxide materials: intercalation vs. precipitation. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4684		118
261	High-temperature adsorption of carbon dioxide on mixed oxides derived from hydrotalcite-like compounds. <i>Environmental Science & Environmental Science</i>	10.3	114
260	Layered double hydroxide nanomaterials as potential cellular drug delivery agents. <i>Pure and Applied Chemistry</i> , 2006 , 78, 1771-1779	2.1	113
259	Low-Temperature Synthesis of MgxCo1-xCo2O4 Spinel Catalysts for N2O Decomposition. <i>Chemistry of Materials</i> , 2000 , 12, 650-658	9.6	110
258	Surface charging of layered double hydroxides during dynamic interactions of anions at the interfaces. <i>Journal of Colloid and Interface Science</i> , 2008 , 326, 522-9	9.3	109
257	Decomposition Pathways of Hydrotalcite-like Compounds Mg1-xAlx(OH)2(NO3)xhH2O as a Continuous Function of Nitrate Anions. <i>Chemistry of Materials</i> , 2001 , 13, 4564-4572	9.6	106
256	Manipulating extracellular tumour pH: an effective target for cancer therapy <i>RSC Advances</i> , 2018 , 8, 22182-22192	3.7	98
255	Ultra-small fluorescent inorganic nanoparticles for bioimaging. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 2793-2818	7.3	94
254	Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers. <i>Journal of Power Sources</i> , 2008 , 185, 664-669	8.9	94
253	Controlled preparation of layered double hydroxide nanoparticles and their application as gene delivery vehicles. <i>Applied Clay Science</i> , 2010 , 48, 280-289	5.2	93

252	"Dual-Key-and-Lock" Ruthenium Complex Probe for Lysosomal Formaldehyde in Cancer Cells and Tumors. <i>Journal of the American Chemical Society</i> , 2019 , 141, 8462-8472	16.4	83
251	Diagnostic imaging and therapeutic application of nanoparticles targeting the liver. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 939-958	7.3	82
250	Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation. <i>Applied Catalysis B: Environmental</i> , 2010 , 96, 466-475	21.8	82
249	Layered double hydroxide nanoparticles as cellular delivery vectors of supercoiled plasmid DNA. <i>International Journal of Nanomedicine</i> , 2007 , 2, 163-74	7.3	81
248	Comparative Studies on Porous Material-Supported Pd Catalysts for Catalytic Oxidation of Benzene, Toluene, and Ethyl Acetate. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 6930-6	938	80
247	Decomposition Processes of Organic-Anion-Pillared Clays CoaMgbAl(OH)c(TA)dlhH2O. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 10206-10214	3.4	77
246	Effective adsorption of sodium dodecylsulfate (SDS) by hydrocalumite (CaAl-LDH-Cl) induced by self-dissolution and re-precipitation mechanism. <i>Journal of Colloid and Interface Science</i> , 2012 , 367, 264-	-913	75
245	Pre-coating layered double hydroxide nanoparticles with albumin to improve colloidal stability and cellular uptake. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 3331-3339	7.3	74
244	Short- and Long-Term Tracking of Anionic Ultrasmall Nanoparticles in Kidney. ACS Nano, 2016, 10, 387-9	95 6.7	72
243	Potential for layered double hydroxides-based, innovative drug delivery systems. <i>International Journal of Molecular Sciences</i> , 2014 , 15, 7409-28	6.3	72
242	Synthesis, structure and morphology of organic layered double hydroxide (LDH) hybrids: Comparison between aliphatic anions and their oxygenated analogs. <i>Applied Clay Science</i> , 2010 , 48, 235	- 5 :42	72
241	Recent advances in the development of responsive probes for selective detection of cysteine. <i>Coordination Chemistry Reviews</i> , 2020 , 408, 213182	23.2	70
240	Amine-functionalized SiO2 nanodot-coated layered double hydroxide nanocomposites for enhanced gene delivery. <i>Nano Research</i> , 2015 , 8, 682-694	10	70
239	Nanoparticle-Based Nanomedicines to Promote Cancer Immunotherapy: Recent Advances and Future Directions. <i>Small</i> , 2019 , 15, e1900262	11	69
238	Induction of virus resistance by exogenous application of double-stranded RNA. <i>Current Opinion in Virology</i> , 2017 , 26, 49-55	7.5	69
237	Control of Surface Area and Porosity of Co3O4 via Intercalation of Oxidative or Nonoxidative Anions in Hydrotalcite-like Precursors. <i>Chemistry of Materials</i> , 2000 , 12, 3459-3465	9.6	69
236	Enhancement of relaxivity rates of Gd-DTPA complexes by intercalation into layered double hydroxide nanoparticles. <i>Chemistry - A European Journal</i> , 2007 , 13, 2824-30	4.8	67
235	Effective removal and fixation of Cr(VI) from aqueous solution with Friedel's salt. <i>Journal of Hazardous Materials</i> , 2009 , 170, 1086-92	12.8	65

(2020-2018)

234	A review on fabricating heterostructures from layered double hydroxides for enhanced photocatalytic activities. <i>Catalysis Science and Technology</i> , 2018 , 8, 1207-1228	5.5	64	
233	Unusual Hydrocarbon Chain Packing Mode and Modification of Crystallite Growth Habit in the Self-Assembled Nanocomposites ZincAluminum-Hydroxide Oleate and Elaidate (cis- andtrans-[Zn2Al(OH)6(CH3(CH2)7CHCH(CH2)7COO-)] and Magnesium Analogues. <i>Chemistry of Materials</i> ,	9.6	64	
232	Control Preparation of Zinc Hydroxide Nitrate Nanocrystals and Examination of the Chemical and Structural Stability. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 10325-10332	3.8	63	
231	Studies on adsorption of phenol and 4-nitrophenol on MgAl-mixed oxide derived from MgAl-layered double hydroxide. <i>Separation and Purification Technology</i> , 2009 , 67, 194-200	8.3	63	
230	The effect of Zn, Al layered double hydroxide on thermal decomposition of poly(vinyl chloride). <i>Polymer Degradation and Stability</i> , 2006 , 91, 3237-3244	4.7	63	
229	Enhanced removal of triphosphate by MgCaFe-Cl-LDH: synergism of precipitation with intercalation and surface uptake. <i>Journal of Hazardous Materials</i> , 2011 , 189, 586-94	12.8	62	
228	Enhanced effects of low molecular weight heparin intercalated with layered double hydroxide nanoparticles on rat vascular smooth muscle cells. <i>Biomaterials</i> , 2010 , 31, 5455-62	15.6	62	
227	Preparation of optimized lipid-coated calcium phosphate nanoparticles for enhanced in vitro gene delivery to breast cancer cells. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 6805-6812	7.3	61	
226	Selective oxidation of biorenewable glycerol with molecular oxygen over Cu-containing layered double hydroxide-based catalysts. <i>Catalysis Science and Technology</i> , 2011 , 1, 111	5.5	61	
225	Reinvestigation of Dehydration and Dehydroxylation of Hydrotalcite-like Compounds through Combined TG-DTA-MS Analyses. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 10768-10774	3.8	61	
224	Synthesis of well-dispersed layered double hydroxide core@ordered mesoporous silica shell nanostructure (LDH@mSiOpand its application in drug delivery. <i>Nanoscale</i> , 2011 , 3, 4069-73	7.7	61	
223	Competitive Intercalation of Sulfonates into Layered Double Hydroxides (LDHs): the Key Role of Hydrophobic Interactions. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 4021-4026	3.8	61	
222	Increased PD-L1 expression in breast and colon cancer stem cells. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2017 , 44, 602-604	3	60	
221	Reduction in the size of layered double hydroxide nanoparticles enhances the efficiency of siRNA delivery. <i>Journal of Colloid and Interface Science</i> , 2013 , 390, 275-81	9.3	60	
220	Effective removal of selenate from aqueous solutions by the Friedel phase. <i>Journal of Hazardous Materials</i> , 2010 , 176, 193-8	12.8	60	
219	A novel color removal adsorbent from heterocoagulation of cationic and anionic clays. <i>Journal of Colloid and Interface Science</i> , 2007 , 308, 191-9	9.3	60	
218	Iron-exchanged FAU zeolites: Preparation, characterization and catalytic properties for N2O decomposition. <i>Applied Catalysis A: General</i> , 2008 , 344, 131-141	5.1	60	
217	2D Layered Double Hydroxide Nanoparticles: Recent Progress toward Preclinical/Clinical Nanomedicine. <i>Small Methods</i> , 2020 , 4, 1900343	12.8	59	

216	Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy. <i>Biomaterials</i> , 2018 , 177, 40-51	15.6	59
215	PI3K/Akt/mTOR pathway dual inhibitor BEZ235 suppresses the stemness of colon cancer stem cells. <i>Clinical and Experimental Pharmacology and Physiology</i> , 2015 , 42, 1317-26	3	58
214	Solubility product (Ksp)-controlled removal of chromate and phosphate by hydrocalumite. <i>Chemical Engineering Journal</i> , 2012 , 181-182, 251-258	14.7	57
213	Sustained Release of Brimonidine from a New Composite Drug Delivery System for Treatment of Glaucoma. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 7990-7999	9.5	56
212	Efficient co-delivery of neo-epitopes using dispersion-stable layered double hydroxide nanoparticles for enhanced melanoma immunotherapy. <i>Biomaterials</i> , 2018 , 174, 54-66	15.6	55
211	Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface. <i>Journal of Colloid and Interface Science</i> , 2014 , 435, 21-5	9.3	55
210	Polarized immune responses modulated by layered double hydroxides nanoparticle conjugated with CpG. <i>Biomaterials</i> , 2014 , 35, 9508-16	15.6	55
209	Inhibitory effect of high-strength ammonia nitrogen on bio-treatment of landfill leachate using EGSB reactor under mesophilic and atmospheric conditions. <i>Bioresource Technology</i> , 2012 , 113, 239-43	11	55
208	Cellular trafficking of low molecular weight heparin incorporated in layered double hydroxide nanoparticles in rat vascular smooth muscle cells. <i>Biomaterials</i> , 2011 , 32, 7234-40	15.6	55
207	Influence of M cations on structural, thermal and electrical properties of new oxygen selective membranes based on SrCo0.95M0.05O3Derovskite. <i>Separation and Purification Technology</i> , 2009 , 67, 304-311	8.3	54
206	Quantum dot-based nanoprobes for in vivo targeted imaging. Current Molecular Medicine, 2013, 13, 154	↓ <u>9</u> 6 7	54
205	Effective removal of pyrophosphate by CaHeIIDH and its mechanism. <i>Chemical Engineering Journal</i> , 2012 , 179, 72-79	14.7	53
204	Synthesis of nanorattles with layered double hydroxide core and mesoporous silica shell as delivery vehicles. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10641		53
203	Efficient drug delivery using SiO2-layered double hydroxide nanocomposites. <i>Journal of Colloid and Interface Science</i> , 2016 , 470, 47-55	9.3	52
202	Synthesis of Robust Sandwich-Like SiO2@CdTe@SiO2 Fluorescent Nanoparticles for Cellular Imaging. <i>Chemistry of Materials</i> , 2012 , 24, 421-423	9.6	52
201	Efficiency of layered double hydroxide nanoparticle-mediated delivery of siRNA is determined by nucleotide sequence. <i>Journal of Colloid and Interface Science</i> , 2012 , 369, 453-9	9.3	51
200	Enhanced delivery of siRNA to triple negative breast cancer cells in vitro and in vivo through functionalizing lipid-coated calcium phosphate nanoparticles with dual target ligands. <i>Nanoscale</i> , 2018 , 10, 4258-4266	7.7	50
199	Structure and catalytic properties of Sn-containing layered double hydroxides synthesized in the presence of dodecylsulfate and dodecylamine. <i>Applied Clay Science</i> , 2010 , 48, 569-574	5.2	49

(2001-2012)

19	Influence of surface orientation on the organization of nanoparticles in drying nanofluid droplets. Journal of Colloid and Interface Science, 2012, 377, 456-62	9.3	48	
19	Phosphonic acid functionalized silicas for intermediate temperature proton conduction. <i>Journal of Materials Chemistry</i> , 2009 , 19, 2363		46	
19	Synthesis of Non-Al-Containing Hydrotalcite-like Compound Mg0.3CoII0.6CoIII0.2(OH)2(NO3)0.2[H2O. <i>Chemistry of Materials</i> , 1998 , 10, 2277-2283	9.6	46	
19	Novel iron oxide-cerium oxide core-shell nanoparticles as a potential theranostic material for ROS related inflammatory diseases. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 4937-4951	7.3	46	
19.	Fluorescent layered double hydroxide nanoparticles for biological studies. <i>Applied Clay Science</i> , 2010 , 48, 271-279	5.2	45	
19	Engineering a Therapy-Induced Immunogenic Cancer Cell Death Amplifier to Boost Systemic Tumor Elimination. <i>Advanced Functional Materials</i> , 2020 , 30, 1909745	15.6	44	
19	One-pot preparation of highly fluorescent cadmium telluride/cadmium sulfide quantum dots under neutral-pH condition for biological applications. <i>Journal of Colloid and Interface Science</i> , 2013 , 390, 3-10	9.3	44	
19	Effective self-purification of polynary metal electroplating wastewaters through formation of layered double hydroxides. <i>Environmental Science & amp; Technology</i> , 2010 , 44, 8884-90	10.3	44	
19	Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge. <i>Environmental Science & Environmental Science & Environm</i>	10.3	43	
18	Transformation of alunite residuals into layered double hydroxides and oxides for adsorption of acid red G dye. <i>Applied Clay Science</i> , 2012 , 70, 1-7	5.2	43	
18	Novel NO trapping catalysts derived from Co-Mg/X-Al (X=Fe, Mn, Zr, La) hydrotalcite-like compounds. <i>Environmental Science & Environmental & Environme</i>	10.3	42	
18	Efficient and Durable Vaccine against Intimin lbf Diarrheagenic E. Coli Induced by Clay Nanoparticles. <i>Small</i> , 2016 , 12, 1627-39	11	42	
18	MnAl Layered Double Hydroxide Nanoparticles as a Dual-Functional Platform for Magnetic Resonance Imaging and siRNA Delivery. <i>Chemistry - A European Journal</i> , 2017 , 23, 14299-14306	4.8	41	
18	Porous Silica Nanospheres Functionalized with Phosphonic Acid as Intermediate-Temperature Proton Conductors. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 3157-3163	3.8	41	
18.	Effective bio-treatment of fresh leachate from pretreated municipal solid waste in an expanded granular sludge bed bioreactor. <i>Bioresource Technology</i> , 2010 , 101, 1447-52	11	41	
18	Crosslinking to enhance colloidal stability and redispersity of layered double hydroxide nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2015 , 459, 10-16	9.3	40	
18.	Penetration of nanoparticles into human skin. <i>Current Pharmaceutical Design</i> , 2013 , 19, 6353-66	3.3	40	
18:	Ionic Interactions in Crystallite Growth of CoMgAl-hydrotalcite-like Compounds. <i>Chemistry of Materials</i> , 2001 , 13, 4555-4563	9.6	40	

180	Chelator-Free Labeling of Layered Double Hydroxide Nanoparticles for in Vivo PET Imaging. <i>Scientific Reports</i> , 2015 , 5, 16930	4.9	39
179	Effective Cr(VI) Removal from Simulated Groundwater through the Hydrotalcite-Derived Adsorbent. <i>Industrial & Derived Chemistry Research</i> , 2010 , 49, 2752-2758	3.9	38
178	Intercalation of Sulfonate into Layered Double Hydroxide: Comparison of Simulation with Experiment. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 559-566	3.8	38
177	Effect of SOx Adsorption on Layered Double Hydroxides for CO2 Capture. <i>Industrial &</i> Engineering Chemistry Research, 2008 , 47, 7357-7360	3.9	38
176	Silencing PD-1 and PD-L1 with nanoparticle-delivered small interfering RNA increases cytotoxicity of tumor-infiltrating lymphocytes. <i>Nanomedicine</i> , 2019 , 14, 955-967	5.6	37
175	NO(x) decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds. <i>Journal of Colloid and Interface Science</i> , 2009 , 333, 423-30	9.3	37
174	Responsive Upconversion Nanoprobe for Background-Free Hypochlorous Acid Detection and Bioimaging. <i>Small</i> , 2019 , 15, e1803712	11	37
173	Antibody-targeted drug delivery to injured arteries using layered double hydroxide nanoparticles. <i>Advanced Healthcare Materials</i> , 2012 , 1, 669-73	10.1	36
172	Sulfate-Functionalized Carbon/Metal-Oxide Nanocomposites from Hydrotalcite-like Compounds. <i>Nano Letters</i> , 2001 , 1, 703-706	11.5	36
171	Optimization of fermentative biohydrogen production by response surface methodology using fresh leachate as nutrient supplement. <i>Bioresource Technology</i> , 2011 , 102, 8661-8	11	35
170	In-Situ Generation of Maximum Trivalent Cobalt in Synthesis of Hydrotalcite-like Compounds MgxCoII1-x-yCoIIIy(OH)2(NO3)yIhH2O. <i>Chemistry of Materials</i> , 2000 , 12, 2597-2603	9.6	34
169	Intravital multiphoton imaging of the selective uptake of water-dispersible quantum dots into sinusoidal liver cells. <i>Small</i> , 2015 , 11, 1711-20	11	33
168	Fe-USY zeolite catalyst for effective decomposition of nitrous oxide. <i>Environmental Science & Environmental Science & Technology</i> , 2007 , 41, 7901-6	10.3	33
167	Turn-On Fluorescence Probe for Nitric Oxide Detection and Bioimaging in Live Cells and Zebrafish. <i>ACS Sensors</i> , 2019 , 4, 309-316	9.2	33
166	A Facile Way of Modifying Layered Double Hydroxide Nanoparticles with Targeting Ligand-Conjugated Albumin for Enhanced Delivery to Brain Tumour Cells. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 20444-20453	9.5	32
165	Activatable magnetic resonance nanosensor as a potential imaging agent for detecting and discriminating thrombosis. <i>Nanoscale</i> , 2018 , 10, 15103-15115	7.7	32
164	Re-considering how particle size and other properties of antigen-adjuvant complexes impact on the immune responses. <i>Journal of Colloid and Interface Science</i> , 2013 , 395, 1-10	9.3	32
163	The effect of calcium on the treatment of fresh leachate in an expanded granular sludge bed bioreactor. <i>Bioresource Technology</i> , 2011 , 102, 5466-72	11	32

162	Ferrite materials prepared from two industrial wastes: Electroplating sludge and spent pickle liquor. <i>Separation and Purification Technology</i> , 2010 , 75, 210-217	8.3	32	
161	Layered double hydroxide nanoparticles incorporating terbium: applicability as a fluorescent probe and morphology modifier. <i>Journal of Nanoparticle Research</i> , 2010 , 12, 111-120	2.3	31	
160	Brain Targeting Delivery Facilitated by Ligand-Functionalized Layered Double Hydroxide Nanoparticles. <i>ACS Applied Materials & Acs Applied & A</i>	9.5	31	
159	Mannose-conjugated layered double hydroxide nanocomposite for targeted siRNA delivery to enhance cancer therapy. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2018 , 14, 2355-2364	6	30	
158	Real-time histology in liver disease using multiphoton microscopy with fluorescence lifetime imaging. <i>Biomedical Optics Express</i> , 2015 , 6, 780-92	3.5	29	
157	In situ analysis of foliar zinc absorption and short-distance movement in fresh and hydrated leaves of tomato and citrus using synchrotron-based X-ray fluorescence microscopy. <i>Annals of Botany</i> , 2015 , 115, 41-53	4.1	29	
156	Efficient removal of sulfur hexafluoride (SF6) through reacting with recycled electroplating sludge. <i>Environmental Science & Environmental Science & </i>	10.3	29	
155	Novel RuMgAl© Catalyst Derived from Hydrotalcite-like Compound for NO Storage/Decomposition/Reduction. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 10552-10559	3.8	29	
154	Nanotechnology in the management of cervical cancer. <i>Reviews in Medical Virology</i> , 2015 , 25 Suppl 1, 72-83	11.7	28	
153	Integrating Fluorinated Polymer and Manganese-Layered Double Hydroxide Nanoparticles as pH-activated F MRI Agents for Specific and Sensitive Detection of Breast Cancer. <i>Small</i> , 2019 , 15, e1907	2309	28	
152	Engineering small MgAl-layered double hydroxide nanoparticles for enhanced gene delivery. <i>Applied Clay Science</i> , 2014 , 100, 66-75	5.2	28	
151	Iridium(III) Complex-Based Activatable Probe for Phosphorescent/Time-Gated Luminescent Sensing and Imaging of Cysteine in Mitochondria of Live Cells and Animals. <i>Chemistry - A European Journal</i> , 2019 , 25, 1498-1506	4.8	28	
150	Nano- and micro-materials in the treatment of internal bleeding and uncontrolled hemorrhage. <i>Nanomedicine: Nanotechnology, Biology, and Medicine</i> , 2018 , 14, 507-519	6	28	
149	Physiologically Based Pharmacokinetic Model for Long-Circulating Inorganic Nanoparticles. <i>Nano Letters</i> , 2016 , 16, 939-45	11.5	27	
148	Devising new lipid-coated calcium phosphate/carbonate hybrid nanoparticles for controlled release in endosomes for efficient gene delivery. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 7194-7203	7.3	27	
147	Clay Nanoparticles Elicit Long-Term Immune Responses by Forming Biodegradable Depots for Sustained Antigen Stimulation. <i>Small</i> , 2018 , 14, e1704465	11	27	
146	Effects of magnetic field strength and particle aggregation on relaxivity of ultra-small dual contrast iron oxide nanoparticles. <i>Materials Research Express</i> , 2017 , 4, 116105	1.7	25	
145	Development of Multifunctional Clay-Based Nanomedicine for Elimination of Primary Invasive Breast Cancer and Prevention of Its Lung Metastasis and Distant Inoculation. <i>ACS Applied Materials</i> &amn: Interfaces 2019 11 35566-35576	9.5	25	

144	Visualizing liver anatomy, physiology and pharmacology using multiphoton microscopy. <i>Journal of Biophotonics</i> , 2017 , 10, 46-60	3.1	24
143	Tuning core-shell SiO@CdTe@SiO fluorescent nanoparticles for cell labeling. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 2315-2323	7.3	24
142	Synergistic inhibition of colon cancer cell growth with nanoemulsion-loaded paclitaxel and PI3K/mTOR dual inhibitor BEZ235 through apoptosis. <i>International Journal of Nanomedicine</i> , 2016 , 11, 1947-58	7.3	24
141	High and long-term antibacterial activity against Escherichia coli via synergy between the antibiotic penicillin G and its carrier ZnAl layered double hydroxide. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 174, 435-442	6	24
140	Shape-Controlled Hollow Mesoporous Silica Nanoparticles with Multifunctional Capping for In Vitro Cancer Treatment. <i>Chemistry - A European Journal</i> , 2017 , 23, 10878-10885	4.8	23
139	Layered double hydroxide nanoparticles: Impact on vascular cells, blood cells and the complement system. <i>Journal of Colloid and Interface Science</i> , 2018 , 512, 404-410	9.3	23
138	Catalytic ammonia decomposition for CO-free hydrogen generation over Ru/Cr2O3 catalysts. <i>Applied Catalysis A: General</i> , 2013 , 467, 246-252	5.1	23
137	Restenosis treatments using nanoparticle-based drug delivery systems. <i>Current Pharmaceutical Design</i> , 2013 , 19, 6330-9	3.3	23
136	Particle size- and number-dependent delivery to cells by layered double hydroxide nanoparticles. Journal of Colloid and Interface Science, 2015, 437, 10-16	9.3	22
135	Influence of hydrothermal treatment on physicochemical properties and drug release of anti-inflammatory drugs of intercalated layered double hydroxide nanoparticles. <i>Pharmaceutics</i> , 2014 , 6, 235-48	6.4	22
134	Effective NOx Decomposition and Storage/Reduction over Mixed Oxides Derived from Layered Double Hydroxides. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 5794-5797	3.9	22
133	Two-photon dual imaging platform for in vivo monitoring cellular oxidative stress in liver injury. <i>Scientific Reports</i> , 2017 , 7, 45374	4.9	21
132	Enhancing PD-1 Gene Silence in T Lymphocytes by Comparing the Delivery Performance of Two Inorganic Nanoparticle Platforms. <i>Nanomaterials</i> , 2019 , 9,	5.4	21
131	Insluin and epithelial growth factor (EGF) promote programmed death ligand 1(PD-L1) production and transport in colon cancer stem cells. <i>BMC Cancer</i> , 2019 , 19, 153	4.8	21
130	Charge Reversion Simultaneously Enhances Tumor Accumulation and Cell Uptake of Layered Double Hydroxide Nanohybrids for Effective Imaging and Therapy. <i>Small</i> , 2020 , 16, e2002115	11	21
129	Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways. <i>International Journal of Nanomedicine</i> , 2014 , 9, 3403-11	7.3	21
128	Graphene buffered galvanic synthesis of graphenethetal hybrids. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13241		21
127	Synthesis and Characterization of Dual Radiolabeled Layered Double Hydroxide Nanoparticles for Use in In Vitro and In Vivo Nanotoxicology Studies. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 734-740	3.8	21

126	Responsive small-molecule luminescence probes for sulfite/bisulfite detection in food samples. <i>TrAC - Trends in Analytical Chemistry</i> , 2021 , 136, 116199	14.6	21	
125	Targeted Molecular Imaging of Cardiovascular Diseases by Iron Oxide Nanoparticles. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 601-613	9.4	21	
124	Sulfur-Resistant NO Decomposition Catalysts Derived from Colla/Till Hydrotalcite-like Compounds. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6651-6660	3.8	20	
123	Theoretical and Experimental Evidence for the Carbon-Oxygen Group Enhancement of NO Reduction. <i>Environmental Science & Environmental Environmenta</i>	10.3	19	
122	Enhanced Oral Vaccine Efficacy of Polysaccharide-Coated Calcium Phosphate Nanoparticles. <i>ACS Omega</i> , 2020 , 5, 18185-18197	3.9	19	
121	Creating Structural Defects of Drug-Free Copper-Containing Layered Double Hydroxide Nanoparticles to Synergize Photothermal/Photodynamic/Chemodynamic Cancer Therapy. <i>Small Structures</i> , 2021 , 2, 2000112	8.7	19	
120	Alkaline fermentation of waste activated sludge with calcium hydroxide to improve short-chain fatty acids production and extraction efficiency via layered double hydroxides. <i>Bioresource Technology</i> , 2019 , 279, 117-123	11	18	
119	Multifunctional Magnetized Porous Silica Covered with Poly(2-dimethylaminoethyl methacrylate) for pH Controllable Drug Release and Magnetic Resonance Imaging. <i>ACS Applied Nano Materials</i> , 2018 , 1, 5027-5034	5.6	18	
118	High capacitance electrode materials based on layered double hydroxides prepared by non-aqueous precipitation. <i>Applied Clay Science</i> , 2013 , 74, 102-108	5.2	18	
117	Membrane interactions and antimicrobial effects of layered double hydroxide nanoparticles. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 23832-23842	3.6	18	
116	Enhanced precipitation of cyanide from electroplating wastewater via self-assembly of bimetal cyanide complex. <i>Separation and Purification Technology</i> , 2015 , 150, 179-185	8.3	17	
115	Nanotechnology promotes the R&D of new-generation micronutrient foliar fertilizers. <i>RSC Advances</i> , 2016 , 6, 69465-69478	3.7	17	
114	Mid- and near-infrared spectroscopic investigation of homogeneous cation distribution in Mg(x)Zn(y)Al(x+y)/2-layered double hydroxide (LDH). <i>Journal of Colloid and Interface Science</i> , 2013 , 411, 240-6	9.3	17	
113	Triphosphate removal processes over ternary CaMgAl-layered double hydroxides. <i>Applied Clay Science</i> , 2011 , 54, 196-201	5.2	17	
112	Controlled release of ketorolac through nanocomposite films of hydrogel and LDH nanoparticles. Journal of Nanoparticle Research, 2011 , 13, 1253-1264	2.3	17	
111	Dual-target IL-12-containing nanoparticles enhance T cell functions for cancer immunotherapy. <i>Cellular Immunology</i> , 2020 , 349, 104042	4.4	17	
110	Synergistic Cancer Photochemotherapy via Layered Double Hydroxide-Based Trimodal Nanomedicine at Very Low Therapeutic Doses. <i>ACS Applied Materials & Doses</i> , Interfaces, 2021 , 13, 7115-7	125	17	
109	Controlling mesoporous silica-coating of layered double hydroxide nanoparticles for drug control release. <i>Microporous and Mesoporous Materials</i> , 2017 , 238, 97-104	5.3	16	

108	Enhanced Prevention of Breast Tumor Metastasis by Nanoparticle-Delivered Vitamin E in Combination with Interferon-Gamma. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1901706	10.1	16
107	Investigating the Use of Layered Double Hydroxide Nanoparticles as Carriers of Metal Oxides for Theranostics of ROS-Related Diseases <i>ACS Applied Bio Materials</i> , 2019 , 2, 5930-5940	4.1	16
106	Fermentative hydrogen production from fresh leachate in batch and continuous bioreactors. <i>Bioresource Technology</i> , 2011 , 102, 5411-7	11	16
105	Responsive nanosensor for ratiometric luminescence detection of hydrogen sulfide in inflammatory cancer cells. <i>Analytica Chimica Acta</i> , 2020 , 1103, 156-163	6.6	16
104	Nanobody: A Small Antibody with Big Implications for Tumor Therapeutic Strategy. <i>International Journal of Nanomedicine</i> , 2021 , 16, 2337-2356	7.3	16
103	From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer. <i>Advanced Materials</i> , 2021 , 33, e2008094	24	16
102	Simultaneous release of polyphosphate and iron-phosphate from waste activated sludge by anaerobic fermentation combined with sulfate reduction. <i>Bioresource Technology</i> , 2019 , 271, 182-189	11	16
101	Multifunctional lipid-coated calcium phosphate nanoplatforms for complete inhibition of large triple negative breast cancer via targeted combined therapy. <i>Biomaterials</i> , 2019 , 216, 119232	15.6	15
100	Decomposition of potent greenhouse gas sulfur hexafluoride (SF6) by Kirschsteinite-dominant stainless steel slag. <i>Environmental Science & Environmental Science & Environment</i>	10.3	15
99	CN and heavy metal removal through formation of layered double hydroxides from mixed CN-containing electroplating wastewaters and pickle acid liquor. <i>Chemical Engineering Journal</i> , 2013 , 215-216, 411-417	14.7	15
98	Quantitative methods for estimating foliar uptake of zinc from suspension-based Zn chemicals. Journal of Plant Nutrition and Soil Science, 2013 , 176, 764-775	2.3	15
97	Adsorption of bacteria onto layered double hydroxide particles to form biogranule-like aggregates. <i>Applied Clay Science</i> , 2013 , 75-76, 39-45	5.2	15
96	Computer Modeling Study for Intercalation of Drug Heparin into Layered Double Hydroxide. Journal of Physical Chemistry C, 2010 , 114, 12618-12629	3.8	15
95	Enhanced remediation of Cr(VI)-contaminated soil by incorporating a calcined-hydrotalcite-based permeable reactive barrier with electrokinetics. <i>Journal of Hazardous Materials</i> , 2012 , 239-240, 128-34	12.8	14
94	Different Approaches to Develop Nanosensors for Diagnosis of Diseases. <i>Advanced Science</i> , 2020 , 7, 2001476	13.6	14
93	Mannose-Functionalized Biodegradable Nanoparticles Efficiently Deliver DNA Vaccine and Promote Anti-tumor Immunity. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 14015-14027	9.5	14
92	A physiologically based kinetic model for elucidating the in vivo distribution of administered mesenchymal stem cells. <i>Scientific Reports</i> , 2016 , 6, 22293	4.9	14
91	Pretreating anaerobic fermentation liquid with calcium addition to improve short chain fatty acids extraction via in situ synthesis of layered double hydroxides. <i>Bioresource Technology</i> , 2019 , 271, 190-19	5 ¹¹	14

(2021-2017)

90	Efficient induction of comprehensive immune responses to control pathogenic E. coli by clay nano-adjuvant with the moderate size and surface charge. <i>Scientific Reports</i> , 2017 , 7, 13367	4.9	13	
89	Synchronous cyanide purification with metals removal in the co-treatment of Znta and Ni electroplating wastewaters via the Ni2+-assisted precipitation of LDH. <i>Separation and Purification Technology</i> , 2015 , 145, 92-97	8.3	13	
88	Functional magnetic porous silica for T -T dual-modal magnetic resonance imaging and pH-responsive drug delivery of basic drugs. <i>Nanotechnology</i> , 2016 , 27, 485702	3.4	13	
87	Regional assessment of ambient volatile organic compounds from biopharmaceutical R&D complex. <i>Science of the Total Environment</i> , 2011 , 409, 4289-96	10.2	13	
86	Layered Double Hydroxides (LDHs). <i>ChemInform</i> , 2005 , 36, no		13	
85	High adjuvant activity of layered double hydroxide nanoparticles and nanosheets in anti-tumour vaccine formulations. <i>Dalton Transactions</i> , 2018 , 47, 2956-2964	4.3	13	
84	Two-dimensional layered double hydroxide nanoadjuvant: recent progress and future direction. <i>Nanoscale</i> , 2021 , 13, 7533-7549	7.7	13	
83	Stabilization of layered double hydroxide nanoparticles by bovine serum albumin pre-coating for drug/gene delivery. <i>Journal of Controlled Release</i> , 2015 , 213, e150-1	11.7	12	
82	Monofunctional polymer nanoparticles prepared through intramolecularly cross-linking the polymer chains sparsely grafted on the surface of sacrificial silica spheres. <i>Chemical Communications</i> , 2015 , 51, 1842-5	5.8	12	
81	Direct synthesis of layered double hydroxide nanosheets for efficient siRNA delivery. <i>RSC Advances</i> , 2016 , 6, 95518-95526	3.7	12	
80	Clay nanoparticles co-deliver three antigens to promote potent immune responses against pathogenic Escherichia coli. <i>Journal of Controlled Release</i> , 2018 , 292, 196-209	11.7	12	
79	Nanoformulations of albendazole as effective anticancer and antiparasite agents. <i>Nanomedicine</i> , 2017 , 12, 2555-2574	5.6	11	
78	Quick and efficient co-treatment of Zn(2+)/Ni(2+) and CN(-) via the formation of Ni(CN)4(2-) intercalated larger ZnAl-LDH crystals. <i>Journal of Hazardous Materials</i> , 2014 , 279, 141-7	12.8	11	
77	Enhanced cellular delivery and biocompatibility of a small layered double hydroxide-liposome composite system. <i>Pharmaceutics</i> , 2014 , 6, 584-98	6.4	11	
76	Cobalt zeolites: Preparation, characterization and catalytic properties for N2O decomposition. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2012 , 7, 502-509	1.3	11	
75	Performance of layered double hydroxides intercalated with acetate as biodenitrification carbon source: The effects of metal ions and particle size. <i>Bioresource Technology</i> , 2018 , 259, 99-103	11	10	
74	Recent advances in heparinization of polymeric membranes for enhanced continuous blood purification. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 878-894	7.3	10	
73	Heat/pH-boosted release of 5-fluorouracil and albumin-bound paclitaxel from Cu-doped layered double hydroxide nanomedicine for synergistical chemo-photo-therapy of breast cancer. <i>Journal of Controlled Release</i> , 2021 , 335, 49-58	11.7	10	

7 ²	Lipid-encapsulated upconversion nanoparticle for near-infrared light-mediated carbon monoxide release for cancer gas therapy. <i>European Journal of Pharmaceutics and Biopharmaceutics</i> , 2021 , 158, 211	<i>-</i> 2⁄2⁄21	10
71	Anionic Long-Circulating Quantum Dots for Long-Term Intravital Vascular Imaging. <i>Pharmaceutics</i> , 2018 , 10,	6.4	10
70	Optimization of Formulations Consisting of Layered Double Hydroxide Nanoparticles and Small Interfering RNA for Efficient Knockdown of the Target Gene. <i>ACS Omega</i> , 2018 , 3, 4871-4877	3.9	9
69	A comprehensive investigation of influences of NO and O2 on N2O-SCR by CH4 over Fe-USY zeolite. <i>Applied Catalysis B: Environmental</i> , 2009 , 91, 262-268	21.8	9
68	Wet ion exchanged Fe-USY catalyst for effective N2O decomposition. <i>Catalysis Communications</i> , 2008 , 9, 1745-1748	3.2	9
67	X-ray fluorescence imaging of metals and metalloids in biological systems. <i>American Journal of Nuclear Medicine and Molecular Imaging</i> , 2018 , 8, 169-188	2.2	9
66	Nanovaccine rapid induction of anti-tumor immunity significantly improves malignant cancer immunotherapy. <i>Nano Today</i> , 2020 , 35, 100923	17.9	9
65	Synergistic Inhibition of Drug-Resistant Colon Cancer Growth with PI3K/mTOR Dual Inhibitor BEZ235 and Nano-Emulsioned Paclitaxel via Reducing Multidrug Resistance and Promoting Apoptosis. <i>International Journal of Nanomedicine</i> , 2021 , 16, 2173-2186	7.3	9
64	Enhanced combination cancer therapy using lipid-calcium carbonate/phosphate nanoparticles as a targeted delivery platform. <i>Nanomedicine</i> , 2019 , 14, 77-92	5.6	9
63	Potent and durable antibacterial activity of ZnO-dotted nanohybrids hydrothermally derived from ZnAl-layered double hydroxides. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 181, 585-592	6	8
62	An artificial protein-probe hybrid as a responsive probe for ratiometric detection and imaging of hydrogen peroxide in cells. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 5420-5424	7.3	8
61	Indoor CO2 Control through Mesoporous Amine-Functionalized Silica Monoliths. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 19465-19474	3.9	8
60	Synergistic Effect between Surface Anhydride Group and CarbonMetal Species during Catalytic Reduction of Nitric Oxide. <i>Energy & Damp; Fuels</i> , 2017 , 31, 11258-11265	4.1	8
59	Study on a novel composite membrane for treatment of sewage containing oil. <i>Desalination</i> , 2012 , 299, 63-69	10.3	8
58	Nitrate removal from groundwater using negatively charged nanofiltration membrane. <i>Environmental Science and Pollution Research</i> , 2019 , 26, 34197-34204	5.1	8
57	Multi-step removal mechanism of pyrophosphate using CaFe-layered double hydroxide at high pH. <i>Applied Clay Science</i> , 2015 , 105-106, 21-26	5.2	7
56	From Chelating Precursor to Perovskite Oxides and Hollow Fiber Membranes. <i>Journal of the American Ceramic Society</i> , 2007 , 90, 84-91	3.8	7
55	Bisphosphonate Stabilized Calcium Phosphate Nanoparticles for Effective Delivery of Plasmid DNA to Macrophages <i>ACS Applied Bio Materials</i> , 2020 , 3, 986-996	4.1	7

54	Modifying layered double hydroxide nanoparticles for tumor imaging and therapy. <i>Clays and Clay Minerals</i> , 2019 , 67, 72-80	2.1	6
53	Short-term exposure to ZnO/MCB persistent free radical particles causes mouse lung lesions via inflammatory reactions and apoptosis pathways. <i>Environmental Pollution</i> , 2020 , 261, 114039	9.3	6
52	Hydrotalcite Intercalated siRNA: Computational Characterization of the Interlayer Environment. <i>Pharmaceutics</i> , 2012 , 4, 296-313	6.4	6
51	Zr(HPO4)2 based organic/inorganic nanohybrids as new proton conductors. <i>Solid State Ionics</i> , 2008 , 178, 1654-1659	3.3	6
50	Dynamic nano-assemblies based on two-dimensional inorganic nanoparticles: Construction and preclinical demonstration. <i>Advanced Drug Delivery Reviews</i> , 2021 , 180, 114031	18.5	6
49	A hydrogen peroxide activatable nanoprobe for light-controlled "double-check" multi-colour fluorescence imaging. <i>Nanoscale</i> , 2020 , 12, 22527-22533	7.7	6
48	Albumin-stabilized layered double hydroxide nanoparticles synergized combination chemotherapy for colorectal cancer treatment. <i>Nanomedicine: Nanotechnology, Biology, and Medicine,</i> 2021 , 34, 102369	96	6
47	Understanding of the high hydrothermal stability of a catalyst prepared from Mn slag for low-temperature selective catalytic reduction of NO. <i>Journal of Hazardous Materials</i> , 2020 , 381, 120935	12.8	6
46	Engineering Chameleon Prodrug Nanovesicles to Increase Antigen Presentation and Inhibit PD-L1 Expression for Circumventing Immune Resistance of Cancer. <i>Advanced Materials</i> , 2021 , 33, e2102668	24	6
45	Zinc uptake and distribution in tomato plants in response to foliar supply of Zn hydroxide-nitrate nanocrystal suspension with controlled Zn solubility. <i>Journal of Plant Nutrition and Soil Science</i> , 2015 , 178, 722-731	2.3	5
44	Magnetic nanomaterials recovered from co-treatment of CN-containing electroplating wastewaters and pickle acid liquor. <i>Separation and Purification Technology</i> , 2013 , 120, 186-190	8.3	5
43	Fe(CN)63/Fe(CN)64/Fedox in the interlayer determined by the charge density of ZnnCr-layered double hydroxides. <i>Journal of Solid State Chemistry</i> , 2013 , 198, 506-510	3.3	5
42	Sheet-like clay nanoparticles deliver RNA into developing pollen to efficiently silence a target gene. <i>Plant Physiology</i> , 2021 , 187, 886-899	6.6	5
41	Efficient delivery of clay-based nanovaccines to the mouse spleen promotes potent anti-tumor immunity for both prevention and treatment of lymphoma. <i>Nano Research</i> , 2021 , 14, 1326-1334	10	5
40	Enhancing Tumor Accumulation and Cellular Uptake of Layered Double Hydroxide Nanoparticles by Coating/Detaching pH-Triggered Charge-Convertible Polymers. <i>ACS Omega</i> , 2021 , 6, 3822-3830	3.9	5
39	Eco-friendly biomolecule-nanomaterial hybrids as next-generation agrochemicals for topical delivery. <i>EcoMat</i> , 2021 , 3, e12132	9.4	5
38	Targeted Drug Delivery: 2D Layered Double Hydroxide Nanoparticles: Recent Progress toward Preclinical/Clinical Nanomedicine (Small Methods 2/2020). <i>Small Methods</i> , 2020 , 4, 2070008	12.8	4
37	Turning phosphatizing wastewater into zinc-incorporated aluminophosphate molecular sieve with an enhanced catalytic performance. <i>Journal of Cleaner Production</i> , 2014 , 78, 249-253	10.3	4

36	Potential foliar fertilizers with copper and zinc dual micronutrients in nanocrystal suspension. Journal of Nanoparticle Research, 2014 , 16, 1	2.3	4
35	New biosensors made of specially designed transparent chips with nano-optical tags. <i>Smart Materials and Structures</i> , 2007 , 16, 2214-2221	3.4	4
34	Strategy for Cytoplasmic Delivery Using Inorganic Particles Pharmaceutical Research, 2022, 1	4.5	4
33	ATP stabilised and sensitised calcium phosphate nanoparticles as effective adjuvants for a DNA vaccine against cancer. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 7435-7446	7.3	4
32	Foliar application of clay-delivered RNA interference for whitefly control Nature Plants, 2022,	11.5	4
31	Nanostructuring a Widely Used Antiworm Drug into the Lipid-Coated Calcium Phosphate Matrix for Enhanced Skin Tumor Treatment <i>ACS Applied Bio Materials</i> , 2020 , 3, 4230-4238	4.1	3
30	Polyethyleneimine-poly(ethylene glycol)-star-copolymers as efficient and biodegradable vectors for mammalian cell transfection. <i>Journal of Biomedical Materials Research - Part A</i> , 2014 , 102, 2137-46	5.4	3
29	Bioceramic macrocapsules for cell immunoisolation. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 3062-5	16.4	3
28	Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. <i>Biomaterials Science</i> , 2021 ,	7.4	3
27	Oxygen-derived free radicals: Production, biological importance, bioimaging, and analytical detection with responsive luminescent nanoprobes. <i>View</i> , 2021 , 2, 20200139	7.8	3
26	Calcium-bisphosphonate Nanoparticle Platform as a Prolonged Nanodrug and Bone-Targeted Delivery System for Bone Diseases and Cancers <i>ACS Applied Bio Materials</i> , 2021 , 4, 2490-2501	4.1	3
25	Vitamin E-facilitated carbon monoxide pro-drug nanomedicine for efficient light-responsive combination cancer therapy. <i>Biomaterials Science</i> , 2021 , 9, 6086-6097	7.4	3
24	Visualization and Modeling of the In Vivo Distribution of Mesenchymal Stem Cells. <i>Current Protocols in Stem Cell Biology</i> , 2017 , 43, 2B.8.1-2B.8.17	2.8	2
23	Enhanced Mucosal Transport of Polysaccharide-Calcium Phosphate Nanocomposites for Oral Vaccination <i>ACS Applied Bio Materials</i> , 2021 , 4, 7865-7878	4.1	2
22	Encapsulating Anti-Parasite Benzimidazole Drugs into Lipid-Coated Calcium Phosphate Nanoparticles to Efficiently Induce Skin Cancer Cell Apoptosis. <i>Frontiers in Nanotechnology</i> , 2021 , 3,	5.5	2
21	Immunostimulatory photochemotherapeutic nanocapsule for enhanced colon cancer treatment. <i>Nanophotonics</i> , 2021 , 10, 3321-3337	6.3	2
20	Tailoring functional nanoparticles for oral vaccine delivery: Recent advances and future perspectives. <i>Composites Part B: Engineering</i> , 2022 , 236, 109826	10	2
19	Therapeutic gas-releasing nanomedicines with controlled release: Advances and perspectives. <i>Exploration</i> ,20210181		2

18	The mechanism of selective molecular capture in carbon nanotube networks. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 14894-8	3.6	1
17	Effects of Surface Properties of Organic Matters on Cation Adsorption in Solution Phase. <i>Water, Air, and Soil Pollution</i> , 2014 , 225, 1	2.6	1
16	Establishing Reference Conditions for Lake Water Quality: A Novel Extrapolation Approach. <i>Water Resources Management</i> , 2014 , 28, 2161-2178	3.7	1
15	Layered Double Hydroxides: Self-Assembly and Multiple Phases2056-2066		1
14	Effects of nanoparticles on the blood coagulation system (nanoparticle interface with the blood coagulation system) 2022 , 113-140		1
13	Development of manganese dioxide-based nanoprobes for fluorescence detection and imaging of glutathione. <i>New Journal of Chemistry</i> , 2021 , 45, 12377-12383	3.6	1
12	Material Nanotechnology Is Sustaining Modern Agriculture. ACS Agricultural Science and Technology,		1
11	MnO-shelled Doxorubicin/Curcumin nanoformulation for enhanced colorectal cancer chemo-immunotherapy <i>Journal of Colloid and Interface Science</i> , 2022 , 617, 315-325	9.3	1
10	Biomimetic 2D layered double hydroxide nanocomposites for hyperthermia-facilitated homologous targeting cancer photo-chemotherapy. <i>Journal of Nanobiotechnology</i> , 2021 , 19, 351	9.4	0
9	Cancer Immunotherapy: From Design to Clinic: Engineered Nanobiomaterials for Immune Normalization Therapy of Cancer (Adv. Mater. 30/2021). <i>Advanced Materials</i> , 2021 , 33, 2170237	24	Ο
8	Artificial cells for the treatment of liver diseases. <i>Acta Biomaterialia</i> , 2021 , 130, 98-114	10.8	Ο
7	Inhibiting corneal neovascularization by sustainably releasing anti-VEGF and anti-inflammation drugs from silica-thermogel nanohybrids. <i>Materials Science and Engineering C</i> , 2021 , 128, 112274	8.3	Ο
6	Two-dimensional nanomaterials for tumor microenvironment modulation and anticancer therapy. <i>Advanced Drug Delivery Reviews</i> , 2022 , 187, 114360	18.5	0
5	Molecular Modeling of Layered Double Hydroxide Nanoparticles for Drug Delivery 2015 , 197-216		
4	A new design of ionic complexation and its application for efficient protection of proteins. <i>Polymer Chemistry</i> , 2015 , 6, 1688-1692	4.9	
3	Cover story. Non-viral gene and drug delivery. <i>Journal of Controlled Release</i> , 2008 , 130, 1	11.7	
2	Proton conduction of ordered mesoporous silica-methanesulfonic acid hybrids. <i>Studies in Surface Science and Catalysis</i> , 2007 , 817-820	1.8	
1	Clay Nanoparticles Facilitate Delivery of Antiviral RNA for Crop Protection. <i>Proceedings (mdpi)</i> , 2019 , 36, 9	0.3	