Xinjun Luan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5120460/publications.pdf

Version: 2024-02-01

51 papers	2,180 citations	27 h-index	223800 46 g-index
51	51	51	1137 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Ru ^{II} -Catalyzed Vinylative Dearomatization of Naphthols via a C(sp ²)–H Bond Activation Approach. Journal of the American Chemical Society, 2013, 135, 17306-17309.	13.7	227
2	Palladium-Catalyzed Dynamic Kinetic Asymmetric Transformation of Racemic Biaryls: Axial-to-Central Chirality Transfer. Journal of the American Chemical Society, 2015, 137, 4876-4879.	13.7	177
3	Direct Asymmetric Dearomatization of 2â€Naphthols by Scandiumâ€Catalyzed Electrophilic Amination. Angewandte Chemie - International Edition, 2015, 54, 2356-2360.	13.8	121
4	Rapid Assembly of Diversely Functionalized Spiroindenes by a Threeâ€Component Palladiumâ€Catalyzed Câ^'H Amination/Phenol Dearomatization Domino Reaction. Angewandte Chemie - International Edition, 2017, 56, 14257-14261.	13.8	109
5	Modular Assembly of Spirocarbocyclic Scaffolds through Pd ⁰ â€Catalyzed Intermolecular Dearomatizing [2+2+1] Annulation of Bromonaphthols with Aryl Iodides and Alkynes. Angewandte Chemie - International Edition, 2017, 56, 2767-2771.	13.8	101
6	Highly Stereoselective Synthesis of Imineâ€Containing Dibenzo[<i>b</i> , <i>d</i>)azepines by a Palladium(II)â€Catalyzed [5+2] Oxidative Annulation of <i>o</i> â€Arylanilines with Alkynes. Angewandte Chemie - International Edition, 2015, 54, 15385-15389.	13.8	98
7	Palladium/Norborneneâ€Catalyzed Câ^'H Alkylation/Alkyne Insertion/Indole Dearomatization Domino Reaction: Assembly of Spiroindolenineâ€Containing Pentacyclic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 5151-5155.	13.8	97
8	Palladium(0)â€Catalyzed Intermolecular Carbocyclization of (1, <i>n</i>)â€Diynes and Bromophenols: An Efficient Route to Tricyclic Scaffolds. Angewandte Chemie - International Edition, 2016, 55, 6946-6950.	13.8	90
9	Palladiumâ€Catalyzed Intermolecular [4+1] Spiroannulation by C(sp ³)â^'H Activation and Naphthol Dearomatization. Angewandte Chemie - International Edition, 2019, 58, 1474-1478.	13.8	78
10	Palladium(II)-Catalyzed Oxidative Dearomatization of Free Naphthols with Two Alkyne Units. Organic Letters, 2014, 16, 6132-6135.	4.6	74
11	Ru(II)-Catalyzed Oxidative Spiroannulation of 2-Arylphenols with Alkynes via a C–H Activation/Dearomatization Strategy. Journal of Organic Chemistry, 2015, 80, 3349-3356.	3.2	72
12	Hydroxylamines As Bifunctional Single-Nitrogen Sources for the Rapid Assembly of Diverse Tricyclic Indole Scaffolds. Journal of the American Chemical Society, 2020, 142, 6698-6707.	13.7	63
13	Palladiumâ€Catalyzed [2+2+1] Spiroannulation via Alkyneâ€Directed Remote Câ^'H Arylation and Subsequent Arene Dearomatization. Angewandte Chemie - International Edition, 2020, 59, 653-657.	13.8	60
14	Pd(0)-catalyzed chemoselective construction of spirocarbocycles via an alkyne insertion/ \hat{l}^2 -naphthol dearomatization cascade. Chemical Communications, 2015, 51, 3061-3064.	4.1	51
15	Highly Chemo- and Regioselective Construction of Spirocarbocycles by a Pd(0)-Catalyzed Dearomatization of Phenol-Based Biaryls with 1,3-Dienes. Organic Letters, 2016, 18, 2082-2085.	4.6	47
16	Diastereoselective Synthesis of Dibenzo[$\langle i \rangle b \langle i \rangle, \langle i \rangle d \langle i \rangle$] azepines by Pd(II)-Catalyzed [5 + 2] Annulation of $\langle i \rangle o \langle i \rangle$ -Arylanilines with Dienes. Organic Letters, 2017, 19, 1734-1737.	4.6	47
17	Direct Asymmetric Dearomatization of 2â€Naphthols by Scandiumâ€Catalyzed Electrophilic Amination. Angewandte Chemie, 2015, 127, 2386-2390.	2.0	45
18	Catellani Reaction: An Enabling Technology for Vicinal Functionalization of Aryl Halides by Palladium(0)/Norbornene Cooperative Catalysis. Chinese Journal of Chemistry, 2021, 39, 1690-1705.	4.9	41

#	Article	IF	Citations
19	Palladium-Catalyzed Aryne Insertion/Arene Dearomatization Domino Reaction: A Highly Chemoselective Route to Spirofluorenes. ACS Catalysis, 2018, 8, 11029-11034.	11.2	40
20	Rapid assembly of spirocycles with phenol-derived biaryls with alkynes using an oxidative C–H activation/dearomatization strategy. Organic and Biomolecular Chemistry, 2016, 14, 9451-9455.	2.8	36
21	Pd(0)-Catalyzed Intermolecular Dearomatizing [3 + 2] Spiroannulation of Phenol-Based Biaryls and Allenes. Organic Letters, 2018, 20, 880-883.	4.6	34
22	Highly Chemoselective Construction of Spiro[4,5]decane-Embedded Polycyclic Scaffolds by a Palladium/Norbornene-Catalyzed C–H Activation/Arene Dearomatization Reaction. Organic Letters, 2018, 20, 7731-7734.	4.6	34
23	A Dearomatization/Debromination Strategy for the [4+1] Spiroannulation of Bromophenols with α,βâ€Unsaturated Imines. Angewandte Chemie - International Edition, 2020, 59, 18985-18989.	13.8	34
24	Palladium(0)â€Catalyzed Intermolecular Carbocyclization of (1, <i>n</i>)â€Diynes and Bromophenols: An Efficient Route to Tricyclic Scaffolds. Angewandte Chemie, 2016, 128, 7060-7064.	2.0	33
25	Pd(<scp>ii</scp>)-Catalyzed [3 + 2] spiroannulation of α-aryl-β-naphthols with alkynes <i>via</i> a C–H activation/dearomatization approach. Organic Chemistry Frontiers, 2018, 5, 2453-2457.	4.5	32
26	Catalytic Enantioselective Tautomerization of Metastable Enamines. Organic Letters, 2018, 20, 244-247.	4.6	30
27	Modular Assembly of Spirocarbocyclic Scaffolds through Pd ⁰ â€Catalyzed Intermolecular Dearomatizing [2+2+1] Annulation of Bromonaphthols with Aryl Iodides and Alkynes. Angewandte Chemie, 2017, 129, 2811-2815.	2.0	29
28	Two-in-one strategy for fluorene-based spirocycles <i>via</i> Pd(0)-catalyzed spiroannulation of <i>o</i> iodobiaryls with bromonaphthols. Chemical Science, 2020, 11, 10198-10203.	7.4	29
29	Palladium atalyzed Intermolecular [4+1] Spiroannulation via C(sp3)–H Activation and Naphthol Dearomatization. Angewandte Chemie, 2018, 131, 1488.	2.0	27
30	Regioselective Synthesis of Polyfunctional Arenes by a 4-Component Catellani Reaction. CheM, 2020, 6, 2097-2109.	11.7	25
31	Catalytic Asymmetric [4+1] Spiroannulation of \hat{l} ±-Bromo- \hat{l} 2-Naphthols with Azoalkenes by an Electrophilic Dearomatization/S _{RN} 1-Debromination Approach. CCS Chemistry, 2022, 4, 1054-1064.	7.8	25
32	Rapid Assembly of Diversely Functionalized Spiroindenes by a Threeâ€Component Palladiumâ€Catalyzed Câ^'H Amination/Phenol Dearomatization Domino Reaction. Angewandte Chemie, 2017, 129, 14445-14449.	2.0	24
33	Total Synthesis of Dalesconol A by Pd(0)/Norbornene-Catalyzed Three-Fold Domino Reaction and Pd(II)-Catalyzed Trihydroxylation. Journal of the American Chemical Society, 2021, 143, 21270-21274.	13.7	22
34	Palladium/Norborneneâ€Catalyzed Câ^'H Alkylation/Alkyne Insertion/Indole Dearomatization Domino Reaction: Assembly of Spiroindolenineâ€Containing Pentacyclic Frameworks. Angewandte Chemie, 2018, 130, 5245-5249.	2.0	18
35	Palladium atalyzed [2+2+1] Spiroannulation via Alkyneâ€Directed Remote Câ^H Arylation and Subsequent Arene Dearomatization. Angewandte Chemie, 2020, 132, 663-667.	2.0	14
36	Novel spironaphthalenone-based host materials for efficient red phosphorescent and thermally activated delayed fluorescent OLEDs. Organic Electronics, 2018, 61, 376-382.	2.6	13

#	Article	IF	CITATIONS
37	A chemo- and regioselective Pd(0)-catalyzed three-component spiroannulation. Chemical Communications, 2021, 57, 1117-1120.	4.1	11
38	Trifunctionalization of Aryl Iodides with Two Distinct Nitrogen and Carbon Electrophiles by Palladium/Norbornene Catalysis. Chinese Journal of Chemistry, 2021, 39, 2659-2667.	4.9	8
39	Pd-Catalyzed Dearomative Spirocyclization of Bromophenols via[2+2+1] Strategy. Chinese Journal of Organic Chemistry, 2019, 39, 2211.	1.3	8
40	A Dearomatization/Debromination Strategy for the [4+1] Spiroannulation of Bromophenols with α,βâ€Unsaturated Imines. Angewandte Chemie, 2020, 132, 19147-19151.	2.0	7
41	Hydroxylamines as One-Atom Nitrogen Sources for Metal-Catalyzed Cycloadditions. Synthesis, 2021, 53, 1423-1433.	2.3	7
42	Dearomatization/Deiodination of <i>o</i> -lodophenolic Compounds with \hat{l}_{\pm},\hat{l}^2 -Unsaturated Imines for Accessing Benzofuran Derivatives. Organic Letters, 2022, 24, 837-841.	4.6	7
43	Fine-tuning hydroxylamines as single-nitrogen sources for Pd(0)-catalyzed diamination of o-bromo(or) Tj ETQq1	1 0,78431 8.2	4 rgBT /Over
44	Palladium(II)-Catalyzed [2+2+1] Annulation of Alkynes and Hydroxylamines: A Rodox-Neutral Approach to Fully Substituted Pyrroles. Organic Letters, 2022, 24, 5099-5104.	4.6	7
45	Selective C(sp ³)â^'N Bond Cleavage of <i>N</i> , <i>N</i> àêÐialkyl Tertiary Amines with the Loss of a Large Alkyl Group via an S _N 1 Pathway. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
46	Highly regioselective Ru(II)-catalyzed [3+2] spiroannulation of 1-aryl-2-naphthols with alkynes via a double directing group strategy. Tetrahedron Letters, 2021, 71, 153050.	1.4	4
47	Metal-free dearomatization of halonaphthols with C(sp3)-electrophiles. Chinese Chemical Letters, 2021, , .	9.0	4
48	Trifunctionalization of aryl iodides <i>via</i> intermolecular C–H acylation/intramolecular C–H alkylation achieved using palladium/norbornene cooperative catalysis. Organic Chemistry Frontiers, 2022, 9, 4003-4008.	4.5	4
49	Palladium(0)-catalyzed $[2+2+1]$ cyclization of 1,6-enynes with vinyl bromides: a highly diastereoselective synthesis of tetrahydro-1H-cyclopenta[c]furans bearing two quaternary carbon centers. Organic and Biomolecular Chemistry, 2017, 15, 4601-4608.	2.8	2
50	Selective C(sp 3)â^'N Bond Cleavage of N , N â€Dialkyl Tertiary Amines with the Loss of a Large Alkyl Group via an S N 1 Pathway. Angewandte Chemie, O, , .	2.0	2
51	Construction of Structurally Rigid Azulen-6-ones via Migratory Rearrangement of Spirocycles and Their Photophysical Studies. Organic Letters, 2021, 23, 8662-8667.	4.6	0