List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5120291/publications.pdf Version: 2024-02-01

TIECEN LUI

#	Article	IF	CITATIONS
1	Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review. Sensors, 2018, 18, 1072.	2.1	192
2	Polarimetric image recovery method combining histogram stretching for underwater imaging. Scientific Reports, 2018, 8, 12430.	1.6	70
3	Long-Range Distributed Fiber Vibration Sensor Using an Asymmetric Dual Mach–Zehnder Interferometers. Journal of Lightwave Technology, 2016, 34, 2235-2239.	2.7	63
4	A Hybrid Multimode Interference Structure-Based Refractive Index and Temperature Fiber Sensor. IEEE Sensors Journal, 2016, 16, 331-335.	2.4	63
5	Generation of Broadband Chaotic Laser Using Dual-Wavelength Optically Injected Fabry–Pérot Laser Diode With Optical Feedback. IEEE Photonics Technology Letters, 2011, 23, 1872-1874.	1.3	61
6	Underwater Image Recovery Under the Nonuniform Optical Field Based on Polarimetric Imaging. IEEE Photonics Journal, 2018, 10, 1-9.	1.0	60
7	Batch-Producible Fiber-Optic Fabry–Pérot Sensor for Simultaneous Pressure and Temperature Sensing. IEEE Photonics Technology Letters, 2014, 26, 2070-2073.	1.3	55
8	An Elimination Method of Polarization-Induced Phase Shift and Fading in Dual Mach–Zehnder Interferometry Disturbance Sensing System. Journal of Lightwave Technology, 2013, 31, 3135-3141.	2.7	50
9	On-Chip Optical Gas Sensors Based on Group-IV Materials. ACS Photonics, 2020, 7, 2923-2940.	3.2	50
10	Fiber Optic Fabry-Perot Pressure Sensor With Embedded MEMS Micro-Cavity for Ultra-High Pressure Detection. Journal of Lightwave Technology, 2019, 37, 2719-2725.	2.7	47
11	Complete Characterization of Polarization-Maintaining Fibers Using Distributed Polarization Analysis. Journal of Lightwave Technology, 2015, 33, 372-380.	2.7	46
12	Simultaneous Measurement of Refractive Index and Temperature Using a Cascaded FBG/Droplet-Like Fiber Structure. IEEE Sensors Journal, 2015, 15, 6432-6436.	2.4	45
13	Bio-electrostatic sensitive droplet lasers for molecular detection. Nanoscale Advances, 2020, 2, 2713-2719.	2.2	45
14	An Improved Positioning Algorithm With High Precision for Dual Mach–Zehnder Interferometry Disturbance Sensing System. Journal of Lightwave Technology, 2015, 33, 1954-1960.	2.7	44
15	A Modified Empirical Mode Decomposition Algorithm in TDLAS for Gas Detection. IEEE Photonics Journal, 2014, 6, 1-7.	1.0	42
16	All-fiber-optic vector magnetometer based on anisotropic magnetism-manipulation of ferromagnetism nanoparticles. Applied Physics Letters, 2017, 110, .	1.5	42
17	Probabilistic Event Discrimination Algorithm for Fiber Optic Perimeter Security Systems. Journal of Lightwave Technology, 2018, 36, 2069-2075.	2.7	38
18	Performance improvement approaches for optical fiber SPR sensors and their sensing applications. Photonics Research, 2022, 10, 126.	3.4	38

#	Article	IF	CITATIONS
19	Humidity Sensor Based on Fabry–Perot Interferometer and Intracavity Sensing of Fiber Laser. Journal of Lightwave Technology, 2017, 35, 4789-4795.	2.7	37
20	Liquid crystal-amplified optofluidic biosensor for ultra-highly sensitive and stable protein assay. PhotoniX, 2021, 2, 18.	5.5	35
21	Long Measurement Range OFDR Beyond Laser Coherence Length. IEEE Photonics Technology Letters, 2013, 25, 202-205.	1.3	34
22	Magnetic-Fluid-Coated Photonic Crystal Fiber and FBC for Magnetic Field and Temperature Sensing. IEEE Photonics Technology Letters, 2016, 28, 2665-2668.	1.3	34
23	Investigation of Wavelength Modulation and Wavelength Sweep Techniques in Intracavity Fiber Laser for Gas Detection. Journal of Lightwave Technology, 2011, 29, 15-21.	2.7	33
24	Cryogenic Temperature Measurement Using Rayleigh Backscattering Spectra Shift by OFDR. IEEE Photonics Technology Letters, 2014, 26, 1150-1153.	1.3	33
25	MoSe ₂ -Au Based Sensitivity Enhanced Optical Fiber Surface Plasmon Resonance Biosensor for Detection of Goat-Anti-Rabbit IgG. IEEE Access, 2020, 8, 660-668.	2.6	33
26	Temperature-Compensated Magnetostrictive Current Sensor Based on the Configuration of Dual Fiber Bragg Gratings. Journal of Lightwave Technology, 2017, 35, 4910-4915.	2.7	32
27	High Sensitivity Distributed Static Strain Sensing Based on Differential Relative Phase in Optical Frequency Domain Reflectometry. Journal of Lightwave Technology, 2020, 38, 5825-5836.	2.7	32
28	Distributed Optical Fiber Current Sensor Based on Magnetostriction in OFDR. IEEE Photonics Technology Letters, 2015, 27, 2055-2058.	1.3	30
29	Distributed Strain and Temperature Discrimination Using Two Types of Fiber in OFDR. IEEE Photonics Journal, 2016, 8, 1-8.	1.0	29
30	An Event Recognition Scheme Aiming to Improve Both Accuracy and Efficiency in Optical Fiber Perimeter Security System. Journal of Lightwave Technology, 2020, 38, 5783-5790.	2.7	29
31	An All-Fiber Optic Current Sensor Based on Ferrofluids and Multimode Interference. IEEE Sensors Journal, 2014, 14, 1749-1753.	2.4	28
32	A Continuous Wavelet Transform Based Time Delay Estimation Method for Long Range Fiber Interferometric Vibration Sensor. Journal of Lightwave Technology, 2016, 34, 3785-3789.	2.7	28
33	Electrowetting lens with large aperture and focal length tunability. Scientific Reports, 2020, 10, 16318.	1.6	28
34	Assembly-Free-Based Fiber-Optic Micro-Michelson Interferometer for High Temperature Sensing. IEEE Photonics Technology Letters, 2016, 28, 625-628.	1.3	25
35	A De-Noising Algorithm Based on EEMD in Raman-Based Distributed Temperature Sensor. IEEE Sensors Journal, 2017, 17, 134-138.	2.4	23
36	High Sensitivity Fiber Optic SPR Refractive Index Sensor Based on Multimode-No-Core-Multimode Structure. IEEE Sensors Journal, 2020, 20, 2967-2975.	2.4	23

#	Article	IF	CITATIONS
37	Configurable Filter-Based Endpoint Detection in DMZI Vibration System. IEEE Photonics Technology Letters, 2014, 26, 1956-1959.	1.3	22
38	Magnetic Field Sensor Based on Ferrofluid and Photonic Crystal Fiber With Offset Fusion Splicing. IEEE Photonics Technology Letters, 2016, 28, 2043-2046.	1.3	21
39	Theoretical modeling of a coupled plasmon waveguide resonance sensor based on multimode optical fiber. Optics Communications, 2018, 410, 552-558.	1.0	21
40	A High-Precision Wavelength Demodulation Method Based on Optical Fiber Fabry-Perot Tunable Filter. IEEE Access, 2018, 6, 45983-45989.	2.6	21
41	A Combined Events Recognition Scheme Using Hybrid Features in Distributed Optical Fiber Vibration Sensing System. IEEE Access, 2019, 7, 105609-105616.	2.6	21
42	Self-Filtering High-Resolution Dual-Sapphire-Fiber-Based High-Temperature Sensor. Journal of Lightwave Technology, 2019, 37, 1408-1414.	2.7	21
43	Measurements of the thermal coefficient of optical attenuation at different depth regions of in vivo human skins using optical coherence tomography: a pilot study. Biomedical Optics Express, 2015, 6, 500.	1.5	20
44	Fiber-integrated WGM optofluidic chip enhanced by microwave photonic analyzer for cardiac biomarker detection with ultra-high resolution. Biosensors and Bioelectronics, 2022, 208, 114238.	5.3	20
45	Magnetic Field and Temperature Sensing Based on a Macro-Bending Fiber Structure and an FBG. IEEE Sensors Journal, 2016, 16, 7659-7662.	2.4	19
46	Magnetic Field Sensing Based on a Ferrofluid-Coated Multimode Interferometer in a Fiber-Loop Ring-Down Cavity. IEEE Sensors Journal, 2018, 18, 3206-3210.	2.4	19
47	An Improved Positioning Algorithm in a Long-Range Asymmetric Perimeter Security System. Journal of Lightwave Technology, 2016, 34, 5278-5283.	2.7	18
48	Fiber Optic Magnetic Field Sensor Based on Magnetic Nanoparticle Assembly in Microcapillary Ring Resonator. IEEE Photonics Journal, 2017, 9, 1-9.	1.0	16
49	Ultrasensitive Label-Free Biosensor Based on the Graphene-Oxide-Coated-U-Bent Long-Period Fiber Grating Inscribed in a Two-Mode Fiber. Journal of Lightwave Technology, 2021, 39, 4013-4019.	2.7	16
50	A Simple and Effective Demodulation Method for Polarized Low-Coherence Interferometry. IEEE Photonics Technology Letters, 2012, 24, 1390-1392.	1.3	15
51	Optical Current Sensor With Dual-Wavelength Configuration for Improving Temperature Robustness. IEEE Photonics Journal, 2017, 9, 1-10.	1.0	15
52	Automatic Lumen Segmentation in Intravascular Optical Coherence Tomography Using Morphological Features. IEEE Access, 2019, 7, 88859-88869.	2.6	15
53	Method for Improving Spatial Resolution and Amplitude by Optimized Deskew Filter in Long-Range OFDR. IEEE Photonics Journal, 2014, 6, 1-11.	1.0	14
54	Numerical methods for high-power Er/Yb-codoped fiber amplifiers. Optical and Quantum Electronics, 2015, 47, 2199-2212.	1.5	14

#	Article	IF	CITATIONS
55	Hybrid Sapphire Dual-Fabry—Perot-Cavities Sensor for High Temperature and Refractive Index Measurement. Journal of Lightwave Technology, 2021, 39, 3911-3918.	2.7	14
56	Review of Fiber Mechanical and Thermal Multi-Parameter Measurement Technologies and Instrumentation. Journal of Lightwave Technology, 2021, 39, 3724-3739.	2.7	14
57	Multi-layer optical fiber surface plasmon resonance biosensor based on a sandwich structure of polydopamine-MoSe ₂ @Au nanoparticles-polydopamine. Biomedical Optics Express, 2020, 11, 6840.	1.5	14
58	Tomographic Inspection of Fiber Coils Using Optical Coherence Tomography. IEEE Photonics Technology Letters, 2015, 27, 549-552.	1.3	13
59	Temperature Self-Compensation High-Resolution Refractive Index Sensor Based on Fiber Ring Laser. IEEE Photonics Technology Letters, 2017, 29, 1743-1746.	1.3	13
60	Temperature Insensitive and Integrated Differential Pressure Sensor for Liquid Level Sensing Based on an Optical Fiber Fabry–Perot Interferometer. IEEE Photonics Journal, 2018, 10, 1-8.	1.0	13
61	Variational Mode Decomposition-Based Event Recognition in Perimeter Security Monitoring With Fiber Optic Vibration Sensor. IEEE Access, 2019, 7, 182580-182587.	2.6	13
62	Refractive Index Sensor Based on Graphene Oxide-Coated Long-Period Fiber Grating Inscribed in a Two-Mode Fiber. IEEE Access, 2020, 8, 109028-109037.	2.6	13
63	Optical Fiber Distributed Vibration Sensing Using Grayscale Image and Multi-Class Deep Learning Framework for Multi-Event Recognition. IEEE Sensors Journal, 2021, 21, 19112-19120.	2.4	13
64	Temperature Compensation of Optical Fiber Current Sensors With a Static Bias. IEEE Sensors Journal, 2022, 22, 352-356.	2.4	13
65	High-Efficiency Endpoint Detection in Optical Fiber Perimeter Security. Journal of Lightwave Technology, 2016, 34, 5049-5055.	2.7	12
66	Performance characterization of fiber Bragg grating thermal response in space vacuum thermal environment. Review of Scientific Instruments, 2013, 84, 123107.	0.6	11
67	Wavelength Dependence of the Sensitivity of All-Fiber Refractometers Based on the Singlemode–Multimode–Singlemode Structure. IEEE Photonics Journal, 2014, 6, 1-7.	1.0	11
68	Reflective all-fiber current sensor based on magnetic fluids. Review of Scientific Instruments, 2014, 85, 083107.	0.6	11
69	Note: Improving distributed strain sensing sensitivity in OFDR by reduced-cladding single mode fiber. Review of Scientific Instruments, 2016, 87, 126106.	0.6	11
70	Event Discrimination of Fiber Disturbance Based on Filter Bank in DMZI Sensing System. IEEE Photonics Journal, 2016, 8, 1-14.	1.0	11
71	Pseudo-polarimetric Method for Dense Haze Removal. IEEE Photonics Journal, 2019, 11, 1-11.	1.0	11
72	All optic-fiber coupled plasmon waveguide resonance sensor using ZrS ₂ based dielectric layer. Optics Express, 2020, 28, 11280.	1.7	11

#	Article	IF	CITATIONS
73	Self-Referenced Residual Pressure Measurement Method for Fiber-Optic Pressure Sensor Chip. IEEE Photonics Technology Letters, 2014, 26, 957-960.	1.3	10
74	Remote Gas Pressure Sensor Based on Fiber Ring Laser Embedded With Fabry–Pérot Interferometer and Sagnac Loop. IEEE Photonics Journal, 2016, 8, 1-8.	1.0	10
75	An Improved Polarization Compensation Method for Interferometric Fiber-Optic Intrusion Sensors. IEEE Photonics Technology Letters, 2017, 29, 834-837.	1.3	10
76	Long-Range OFDR-Based Distributed Vibration Optical Fiber Sensor by Multicharacteristics of Rayleigh Scattering. IEEE Photonics Journal, 2017, 9, 1-10.	1.0	10
77	A FBC-OCT Catheter to Reconstruct Vascular Shape in Intravascular Optical Coherence Tomography. IEEE Photonics Technology Letters, 2019, 31, 701-704.	1.3	10
78	A Novel Mach–Zehnder Interferometric Temperature Sensor Based on a Symmetrical Double-Grooved Structure. IEEE Sensors Journal, 2020, 20, 14850-14856.	2.4	10
79	Liquid Lens with Large Focal Length Tunability Fabricated in a Polyvinyl Chloride/Dibutyl Phthalate Gel Tube. Langmuir, 2020, 36, 1430-1436.	1.6	10
80	Orthogonal Phase Demodulation of Optical Fiber Fabry-Perot Interferometer Based on Birefringent Crystals and Polarization Technology. IEEE Photonics Journal, 2020, 12, 1-9.	1.0	10
81	Demonstration of Large Curvature Radius Shape Sensing Using Optical Frequency Domain Reflectometry in Multi-Core Fibers. IEEE Photonics Journal, 2021, 13, 1-9.	1.0	10
82	Ultraprecise Resonance Wavelength Determination for Optofluidic Sensing Applications. IEEE Photonics Technology Letters, 2015, 27, 399-402.	1.3	9
83	An Angle of Polarization (AoP) Visualization Method for DoFP Polarization Image Sensors Based on Three Dimensional HSI Color Space. Sensors, 2019, 19, 1713.	2.1	9
84	An S-transform-Based Positioning Method for Asymmetric Interferometer Disturbance Sensors. Journal of Lightwave Technology, 2019, 37, 3201-3207.	2.7	9
85	Low Refractive-Index and Temperature Sensitive Torsion Sensor Based on Cascaded Long-Period Fiber Gratings Inscribed in a Four-Mode Fiber. IEEE Access, 2020, 8, 82266-82272.	2.6	9
86	Coherent OTDR Using Flexible All-Digital Orthogonal Phase Code Pulse for Distributed Sensing. IEEE Access, 2020, 8, 85395-85400.	2.6	9
87	Robustness Analysis Based on Optical Fiber Sensor Networks Topology. IEEE Sensors Journal, 2015, 15, 1388-1394.	2.4	8
88	Demonstration of Compact In situ Mueller-Matrix Polarimetry Based on Binary Polarization Rotators. IEEE Access, 2019, 7, 144561-144571.	2.6	8
89	Underwater Imaging by Suppressing the Backscattered Light Based on Mueller Matrix. IEEE Photonics Journal, 2021, 13, 1-6.	1.0	8
90	Real-Time Pressure Measurement Method Based on Rapid Phase Demodulation of Multi-Cavities F-P Sensor. IEEE Sensors Journal, 2021, 21, 26624-26630.	2.4	8

#	Article	IF	CITATIONS
91	Multispectral Stokes Imaging Polarimetry Based on Color CCD. IEEE Photonics Journal, 2016, 8, 1-10.	1.0	7
92	Long-Sensing-Length Strain Sensor Based on Optical Fiber Fabry-Perot Interferometer With HCF-SMF Structure. IEEE Photonics Journal, 2019, 11, 1-8.	1.0	7
93	Refractometric Sensitivity Enhancement of Weakly Tilted Fiber Bragg Grating Integrated with Black Phosphorus. Nanomaterials, 2020, 10, 1423.	1.9	7
94	Dual-Frequency CARS Excitation Source With Two Independent-Tunable Stokes Wavelengths Using PM-PCF and Vector Adjustment. Journal of Lightwave Technology, 2020, 38, 2392-2399.	2.7	7
95	Dynamic Phase Extraction in an Ameliorated Distributed Vibration Sensor Using a Highly Stable Homodyne Detection. IEEE Sensors Journal, 2021, 21, 27005-27014.	2.4	7
96	Temperature cross-sensitivity characteristics of singlemode–multimode–singlemode fiber structure. Review of Scientific Instruments, 2015, 86, 013108.	0.6	6
97	Study on the Sensitization Effect of Flywheel-Like Diaphragm on Fiber-Optic Fabry-Perot Acoustic Sensor. IEEE Access, 2020, 8, 99286-99293.	2.6	6
98	The resilient hybrid fiber sensor network with self-healing function. Review of Scientific Instruments, 2015, 86, 033111.	0.6	5
99	Influence of sample pool on interference pattern in defocused interferometric particle imaging. Review of Scientific Instruments, 2017, 88, 043302.	0.6	5
100	NaYF ₄ :Yb/Tm@SiO ₂ -Dox/Cur-CS/OSA nanoparticles with pH and photon responses. Nanotechnology, 2021, 32, 255703.	1.3	5
101	Automatic lumen segmentation using uniqueness of vascular connected region for intravascular optical coherence tomography. Journal of Biophotonics, 2021, 14, e202100124.	1.1	5
102	Double-Antibody Sandwich Immunoassay and Plasmonic Coupling Synergistically Improved Long-Range SPR Biosensor with Low Detection Limit. Nanomaterials, 2021, 11, 2137.	1.9	5
103	GPU-Based Real-Time Distributed Dynamic Strain Sensing in Optical Frequency Domain Reflectometry. IEEE Sensors Journal, 2021, 21, 24166-24176.	2.4	5
104	Improved laser measurement using advanced techniques: A review. Microwave and Optical Technology Letters, 2022, 64, 2256-2263.	0.9	5
105	An Optimized Attenuation Compensation and Contrast Enhancement Algorithm Without Pseudocharacteristics in Intravascular OCT Imaging. IEEE Photonics Journal, 2016, 8, 1-9.	1.0	4
106	An Improved Optical Fiber Remote Sensing Method Based on Polarized Low-Coherence Interferometry. IEEE Photonics Journal, 2018, 10, 1-9.	1.0	4
107	Simultaneous shape and size measurements of irregular rough particles by an IPI system with double receivers. Journal of Modern Optics, 2019, 66, 1226-1234.	0.6	4
108	Femtosecond Pulse Temporal Overlap Estimation and Adjustment in SSFS-Based CARS System. IEEE Access, 2019, 7, 131317-131325.	2.6	4

#	Article	IF	CITATIONS
109	High-Sensitivity Temperature Sensor Based on Microsphere Cavity in Super Larger Thermo-Optic Coefficient Germanium-core Fiber. IEEE Access, 2019, 7, 182658-182663.	2.6	4
110	Phase Noise Cancellation in Coherent Communication Systems Using a Radio Frequency Pilot Tone. Applied Sciences (Switzerland), 2019, 9, 4717.	1.3	4
111	Theoretical and Experimental Investigation of an All-Fiber Waveguide Coupled Surface Plasmon Resonance Sensor With Au–ZnO–Au Sandwich Structure. IEEE Access, 2019, 7, 169961-169968.	2.6	4
112	Impact of Equalization-Enhanced Phase Noise on Digital Nonlinearity Compensation in High-Capacity Optical Communication Systems. Sensors, 2020, 20, 4149.	2.1	4
113	Highly stable in-fiber integrated silica microresonator. Applied Physics Letters, 2020, 116, .	1.5	4
114	Performance Enhancement of the Surface Plasmon Resonance Sensor Through the Annealing Process. IEEE Access, 2020, 8, 33990-33997.	2.6	4
115	Reflective SFT-FBG Hybrid Micro-Probe for Simultaneous Measurement of Relative Humidity and Temperature. IEEE Photonics Journal, 2022, 14, 1-6.	1.0	4
116	Photonic sensors review recent progress of fiber sensing technologies in Tianjin University. Photonic Sensors, 2011, 1, 90-96.	2.5	3
117	Mobile robot localization and navigation system based on monocular vision. Transactions of Tianjin University, 2012, 18, 335-342.	3.3	3
118	Nonperpendicular Incidence Induced Spatial Frequency Drift in Polarized Low-Coherence Interferometry and Its Compensation. IEEE Photonics Journal, 2015, 7, 1-7.	1.0	3
119	Digital Adaptive Carrier Phase Estimation in Multi-level Phase Shift Keying Coherent Optical Communication Systems. , 2016, , .		3
120	A New Method for Determining the Sampling Volume and the Number of Particles Within It for Particle Concentration Identification in Defocused Interferometric Particle Imaging. IEEE Photonics Journal, 2017, 9, 1-15.	1.0	3
121	An ARIMA Based Real-time Monitoring and Warning Algorithm for the Anomaly Detection. , 2017, , .		3
122	Simultaneous Measurement of Pressure and Temperature Based on Adjustable Line Scanning Polarized Low-Coherence Interferometry With Compensation Plate. IEEE Photonics Journal, 2018, 10, 1-9.	1.0	3
123	The development of a multi-parameter heterogeneous fiber sensor network based on fiber Bragg grating and Fabry-Perot. Review of Scientific Instruments, 2019, 90, 046107.	0.6	3
124	Compact Vectorial Transverse Force Sensor Based on Two-Modal Interference in a Few-Mode Seven-Core Fiber. Journal of Lightwave Technology, 2020, 38, 2046-2052.	2.7	3
125	The Correction of Nonlinearity in Wavelength Scanning Based on Long-OPD Interferometer for Fiber Bragg Grating Demodulation in Environment With Variable Temperature. IEEE Photonics Journal, 2020, 12, 1-10.	1.0	3
126	Is Ge an Excellent Material for Mid-IR Kerr Frequency Combs Around 3-μm Wavelengths?. Journal of Lightwave Technology, 2022, 40, 2097-2103.	2.7	3

#	Article	IF	CITATIONS
127	Ultrahighâ€Resolution Optical Fiber Thermometer Based on Microcavity Optoâ€Mechanical Oscillation. Advanced Photonics Research, 2022, 3, .	1.7	3
128	Numerical controlled two optical paths CO2 laser die-cutting technology. Transactions of Tianjin University, 2010, 16, 284-288.	3.3	2
129	An Automatic Baseline Extraction Algorithm for Intensity Absorption Type Gas Sensing. Journal of Lightwave Technology, 2013, 31, 3582-3587.	2.7	2
130	Group Delay Dispersion Measurement From a Spectral Interferogram Based on the Cubic Phase Function. IEEE Photonics Journal, 2014, 6, 1-9.	1.0	2
131	Simultaneous Detection of Mixed Gases Based on Overlapped Spectra Separation With SLIDT. IEEE Photonics Technology Letters, 2015, 27, 794-797.	1.3	2
132	A multi-channel real-time detection method for tunnel boring machine cutter wear based on Chirped Fiber Bragg Gratings. AIP Advances, 2019, 9, 015312.	0.6	2
133	Joint Noise Reduction for Contrast Enhancement in Stokes Polarimetric Imaging. IEEE Photonics Journal, 2019, 11, 1-10.	1.0	2
134	Dual-Mode GVD Tailoring in a Convex Waveguide. IEEE Photonics Journal, 2020, 12, 1-6.	1.0	2
135	Recovered HCN Absorption Spectrum-Based FBG Demodulation Method Covering the Whole C-Band for Temperature Changing Environment. IEEE Access, 2020, 8, 15039-15046.	2.6	2
136	Threeâ€dimensional spatial reconstruction of coronary arteries based on fusion of intravascular optical coherence tomography and coronary angiography. Journal of Biophotonics, 2021, 14, e202000370.	1.1	2
137	Theoretical Investigation of Optical Fiber Waveguide Coupled Surface Plasmon Resonance Sensor with Narrow Full Width at Half-Maximum. , 2021, , .		2
138	PMD monitoring in traffic-carrying optical systems. , 2008, , .		1
139	Allâ€optical pulse repetition frequency divider utilizing an injectionâ€unlocked Fabryâ€Perot laser diode. Microwave and Optical Technology Letters, 2010, 52, 2641-2643.	0.9	1
140	Surface modification of Cu-Cr complex by NIR and MIR laser. Transactions of Tianjin University, 2014, 20, 36-41.	3.3	1
141	An optical fiber Fabry-Perot flow measurement technology based on partial bend structure. Review of Scientific Instruments, 2016, 87, 083103.	0.6	1
142	Anisotropic nanochain-clusters of nanoferrofluid and its applications in vector magnetometer. , 2017, , .		1
143	Frequency Measurement of Dynamic Stress in Polarization Maintaining Fibers. IEEE Photonics Journal, 2018, 10, 1-11.	1.0	1
144	A real-time parallel data acquisition and big data processing method for four-in-one optical fiber sensor network. AIP Advances, 2018, 8, .	0.6	1

#	Article	IF	CITATIONS
145	Optimal Measurement Matrix of Partial Polarimeter for Measuring Ellipsometric Parameters With Eight Intensity Measurements. IEEE Access, 2019, 7, 31494-31500.	2.6	1
146	A Method of HCN Gas Spectrum Denoising and Baseline Removal Used for FBG Interrogation. IEEE Access, 2020, 8, 62706-62713.	2.6	1
147	Weak Coupling Point Detection in Distributed Polarization Coupling Measurement Based on Variational Mode Decomposition. Journal of Lightwave Technology, 2020, , 1-1.	2.7	1
148	A Demodulation Method of Spatial Domain for Low-Coherence Interferometry With High Accuracy and Adaptability. IEEE Photonics Journal, 2020, 12, 1-11.	1.0	1
149	Mechanical Filter-Based Differential Pressure Fiber-Optic Fabry-Perot Infrasound Sensor. IEEE Photonics Journal, 2021, 13, 1-10.	1.0	1
150	Environment-Robust Polarization-Based Phase-Shift Dynamic Demodulation Method for Optical Fiber Acoustic Sensor. IEEE Photonics Journal, 2022, 14, 1-8.	1.0	1
151	Application of Fiber Bragg grating for determining positions of gas absorption lines. Transactions of Tianjin University, 2010, 16, 373-375.	3.3	0
152	Intelligent video surveillance system based on distributed fiber vibration sensing technique. , 2015, , .		0
153	Batch-producible Hybrid Fabry-Perot Fiber-Optic Sensors for Dual-parameters Measurement. , 2019, , .		0
154	The sensitivity enhancement based on the Au & black phosphorus composite film for the surface plasma resonance fiber sensor. , 2021, , .		0
155	Distributed fiber optic vibration sensing with high frequency response assisted by a distributed interferometer. , 2021, , .		0
156	A Demodulation Algorithm for Periodically In-Plane Vibrating MEMS Based on a Stroboscopic Micro-Visual System. Microscopy and Microanalysis, 2022, 28, 145-151.	0.2	0